Issue |
BioMedicine
Volume 8, Number 3, September 2018
|
|
---|---|---|
Article Number | 14 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/bmdcn/2018080314 | |
Published online | 24 August 2018 |
Review article
Mechanical stretch and chronotherapeutic techniques for progenitor cell transplantation and biomaterials
1
Institute of Ageing and Chronic Disease, University of Liverpool, the William Henry Duncan Building, 6 West Derby Street, Liverpool, UK, L7 8TX
2
School of Science and Technology, Nottingham Trent University, Clifton Campus, College Drive, Nottingham, UK, NG11 8NS
* Corresponding author. School of Science and Technology, Nottingham Trent University, Clifton Campus, College Drive, Nottingham, UK, NG11 8NS. E-mail address: john.hunt@ntu.ac.uk (J. A. Hunt).
Received:
29
June
2018
Accepted:
16
July
2018
In the body, mesenchymal progenitor cells are subjected to a substantial amount external force from different mechanical stresses, each potentially influences their behaviour and maintenance differentially. Tensile stress, or compression loading are just two of these forces, and here we examine the role of cyclical or dynamic mechanical loading on progenitor cell proliferation and differentiation, as well as on other cellular processes including cell morphology, apoptosis and matrix mineralisation. Moreover, we also examine how mechanical stretch can be used to optimise and ready biomaterials before their implantation, and examine the role of the circadian rhythm, the body’s innate time keeping system, on biomaterial delivery and acceptance. Finally, we also investigate the effect of mechanical stretch on the circadian rhythm of progenitor cells, as research suggests that mechanical stimulation may be sufficient in itself to synchronise the circadian rhythm of human adult progenitor cells alone, and has also been linked to progenitor cell function. If proven correct, this could offer a novel, non-intrusive method by which human adult progenitor cells may be activated or preconditioned, being readied for differentiation, so that they may be more successfully integrated within a host body, thereby improving tissue engineering techniques and the efficacy of cellular therapies.
Key words: Progenitor cells / Circadian clock / Mechanical stretch / Cell differentiation
© Author(s) 2018. This article is published with open access by China Medical University
Open Access This article is distributed under terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided original author(s) and source are credited.