Open Access
Issue
BioMedicine
Volume 7, Number 1, March 2017
Article Number 3
Number of page(s) 9
DOI https://doi.org/10.1051/bmdcn/2017070103
Published online 03 March 2017
  1. Chou LW, Hsieh YL, Kuan TS, Hong CZ. Needling therapy for myofascial pain: recommended technique with multiple rapid needle insertion. Biomedicine (Taipei). 2014; 4: 13. [CrossRef] [PubMed] [Google Scholar]
  2. Li TC, Li CI, Liao LN, Liu CS, Yang CW, Lin CH, et al. Associations of EDNRA and EDN1 polymorphisms with carotid intima media thickness through interactions with gender, regular exercise, and obesity in subjects in Taiwan: Taichung Community Health Study (TCHS). Biomedicine (Taipei). 2015; 5: 8. [CrossRef] [PubMed] [Google Scholar]
  3. Herbison GJ, Jaweed MM, Ditunno JF. Effect of swimming on reinnervation of rat skeletal muscle. J Neurol Neurosurg Psychiatry. 1974; 37: 1247–51. [CrossRef] [PubMed] [Google Scholar]
  4. van Meeteren NL, Brakkee JH, Hamers FP, Helders PJ, Gispen WH. Exercise training improves functional recovery and motor nerve conduction velocity after sciatic nerve crush lesion in the rat. Arch Phys Med Rehabil. 1997; 78: 70–7. [CrossRef] [PubMed] [Google Scholar]
  5. van Meeteren NL, Brakkee JH, Helders PJ, Wiegant VM, Gispen WH. Functional recovery from sciatic nerve crush lesion in the rat correlates with individual differences in responses to chronic intermittent stress. J Neurosci Res. 1997; 48: 524–32. [CrossRef] [PubMed] [Google Scholar]
  6. Doyle LM, Roberts BL. Exercise enhances axonal growth and functional recovery in the regenerating spinal cord. Neuroscience. 2006; 141: 321–7. [CrossRef] [PubMed] [Google Scholar]
  7. Oliveira LS, Sobral LL, Takeda SY, Betini J, Guirro RR, Somazz MC, et al. Electrical stimulation and swimming in the acute phase of axonotmesis: their influence on nerve regeneration and functional recovery. Rev Neurol. 2008; 47: 11–5. [PubMed] [Google Scholar]
  8. Huang J, Lu L, Zhang J, Hu X, Zhang Y, Liang W, et al. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS One. 2012; 7: e39526. [CrossRef] [PubMed] [Google Scholar]
  9. Hashikawa-Hobara N, Hashikawa N, Zamami Y, Takatori S, Kawasaki H. The mechanism of calcitonin gene-related peptide-containing nerve innervation. J Pharmacol Sci. 2012; 119: 117–21. [CrossRef] [PubMed] [Google Scholar]
  10. Kennedy JM, Zochodne DW. The regenerative deficit of peripheral nerves in experimental diabetes: its extent, timing and possible mechanisms. Brain. 2000; 123: (Pt 10): 2118–29. [CrossRef] [PubMed] [Google Scholar]
  11. Asensio-Pinilla E, Udina E, Jaramillo J, Navarro X. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp Neurol. 2009; 219: 258–65. [CrossRef] [PubMed] [Google Scholar]
  12. Abel EL, Bilitzke PJ. A possible alarm substance in the forced swimming test. Physiol Behav. 1990; 48: 233–9. [CrossRef] [PubMed] [Google Scholar]
  13. Teodori RM, Betini J, de Oliveira LS, Sobral LL, Takeda SY, de Lima Montebelo MI. Swimming exercise in the acute or late phase after sciatic nerve crush accelerates nerve regeneration. Neural Plast. 2011; 2011: 783901. [CrossRef] [PubMed] [Google Scholar]
  14. Robinson MD, Shannon S. Rehabilitation of peripheral nerve injuries. Phys Med Rehabil Clin N Am. 2002; 13: 109–35. [CrossRef] [PubMed] [Google Scholar]
  15. Sarikcioglu L, Oguz N. Exercise training and axonal regeneration after sciatic nerve injury. Int J Neurosci. 2001; 109: 173–7. [CrossRef] [PubMed] [Google Scholar]
  16. Ilha J, Araujo RT, Malysz T, Hermel EE, Rigon P, Xavier LL, et al. Endurance and resistance exercise training programs elicit specific effects on sciatic nerve regeneration after experimental traumatic lesion in rats. Neurorehabil Neural Repair. 2008; 22: 355–66. [CrossRef] [PubMed] [Google Scholar]
  17. Magnuson DS, Smith RR, Brown EH, Enzmann G, Angeli C, Que-sada PM, et al. Swimming as a model of task-specific locomotor retraining after spinal cord injury in the rat. Neurorehabil Neural Repair. 2009; 23: 535–45. [CrossRef] [PubMed] [Google Scholar]
  18. Chen P, Piao X, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015; 130: 605–18. [CrossRef] [PubMed] [Google Scholar]
  19. Kao CH, Chen JJ, Hsu YM, Bau DT, Yao CH, Chen YS. High-frequency electrical stimulation can be a complementary therapy to promote nerve regeneration in diabetic rats. PLoS One. 2013; 8: e79078. [CrossRef] [PubMed] [Google Scholar]
  20. Chang YJ, Hsu CM, Lin CH, Lu MS, Chen L. Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling. Biochim Biophys Acta. 2013; 1830: 4130–6. [CrossRef] [PubMed] [Google Scholar]
  21. Knoferle J, Ramljak S, Koch JC, Tonges L, Asif AR, Michel U, et al. TGF-beta 1 enhances neurite outgrowth via regulation of proteasome function and EFABP. Neurobiol Dis. 2010; 38: 395–404. [CrossRef] [PubMed] [Google Scholar]
  22. Vignery A, McCarthy TL. The neuropeptide calcitonin gene-related peptide stimulates insulin-like growth factor I production by primary fetal rat osteoblasts. Bone. 1996; 18: 331–5. [CrossRef] [PubMed] [Google Scholar]
  23. Millet I, Phillips RJ, Sherwin RS, Ghosh S, Voll RE, Flavell RA, et al. Inhibition of NF-kappaB activity and enhancement of apoptosis by the neuropeptide calcitonin gene-related peptide. J Biol Chem. 2000; 275: 15114–21. [CrossRef] [PubMed] [Google Scholar]
  24. Kangrga I, Randic M. Tachykinins and calcitonin gene-related peptide enhance release of endogenous glutamate and aspartate from the rat spinal dorsal horn slice. J Neurosci. 1990; 10: 2026–38. [CrossRef] [PubMed] [Google Scholar]
  25. Hassan AH, Ableitner A, Stein C, Herz A. Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience. 1993; 55: 185–95. [CrossRef] [PubMed] [Google Scholar]
  26. Caudle KL, Atkinson DA, Brown EH, Donaldson K, Seibt E, Chea T, et al. Hindlimb stretching alters locomotor function after spinal cord injury in the adult rat. Neurorehabil Neural Repair. 2015; 29: 268–77. [CrossRef] [PubMed] [Google Scholar]
  27. Kavlak E, Belge F, Unsal C, Uner AG, Cavlak U, Comlekci S. Effects of pulsed electromagnetic field and swimming exercise on rats with experimental sciatic nerve injury. J Phys Ther Sci. 2014; 26: 1355–61. [CrossRef] [PubMed] [Google Scholar]
  28. Gutmann E, Jakoubek B. Effect of Increased Motor Activity on Regeneration of the Peripheral Nerve in Young Rats. Physiol Bohemoslov. 1963; 12: 463–8. [PubMed] [Google Scholar]
  29. Kim KH, Hwangbo G, Kim SG. The effect of weight-bearing exercise and non-weight-bearing exercise on gait in rats with sciatic nerve crush injury. J Phys Ther Sci. 2015; 27: 1177–9. [CrossRef] [PubMed] [Google Scholar]
  30. Caudle KL, Brown EH, Shum-Siu A, Burke DA, Magnuson TS, Voor MJ, et al. Hindlimb immobilization in a wheelchair alters functional recovery following contusive spinal cord injury in the adult rat. Neurorehabil Neural Repair. 2011; 25: 729–39. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.