Open Access
Review
Issue
BioMedicine
Volume 7, Number 2, June 2017
Article Number 8
Number of page(s) 12
DOI https://doi.org/10.1051/bmdcn/2017070201
Published online 14 June 2017
  1. Ke PY. Horning cell self-digestion: Autophagy wins the 2016 Nobel Prize in Physiology or Medicine. Biomed J 2017; 40: 5–8. [CrossRef] [PubMed] [Google Scholar]
  2. Walton EL. Food for thought: Autophagy researcher wins 2016 Nobel Prize in Physiology or Medicine. Biomed J 2017; 40: 1–4. [CrossRef] [PubMed] [Google Scholar]
  3. Cao QH, Liu F, Yang ZL, Fu XH, Yang ZH, Liu Q, et al. Prognostic value of autophagy related proteins ULK1, Beclin 1, ATG3, ATG5, ATG7, ATG9, ATG10, ATG12, LC3B and p62/SQSTM1 in gastric cancer. Am J Transl Res. 2016; 8: 3831–3847. [PubMed] [Google Scholar]
  4. Tooze SA, Dikic I. Autophagy Captures the Nobel Prize. Cell. 2016; 167: 1433–1435. [PubMed] [Google Scholar]
  5. Sinha RA, Singh BK, Yen PM. Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocr Rev. 2017; 38: 69–102. [PubMed] [Google Scholar]
  6. Yoshida GJ. Therapeutic strategies of drug repositioning targeting autophagy to induce cancer cell death: from pathophysiology to treatment. J Hematol Oncol. 2017; 10: 67. [CrossRef] [PubMed] [Google Scholar]
  7. Liu T, Yang P, Chen H, Huang Y, Liu Y, Waqas Y, et al. Global analysis of differential gene expression related to long-term sperm storage in oviduct of Chinese Soft-Shelled Turtle Pelodiscus sinensis. Sci Rep. 2016; 6: 33296. [CrossRef] [PubMed] [Google Scholar]
  8. Chen W, Sun Y, Liu K, Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res. 2014; 9: 1210–1216. [CrossRef] [Google Scholar]
  9. Sannigrahi MK, Singh V, Sharma R, Panda NK, Khullar M. Role of autophagy in head and neck cancer and therapeutic resistance. Oral Dis. 2015; 21: 283–291. [CrossRef] [PubMed] [Google Scholar]
  10. Lozy F, Karantza V. Autophagy and cancer cell metabolism. Semin Cell Dev Biol. 2012; 23: 395–401. [CrossRef] [PubMed] [Google Scholar]
  11. Lin LT, Dawson PW, Richardson CD. Viral interactions with macroautophagy: a double-edged sword. Virology. 2010; 402: 1–10. [CrossRef] [PubMed] [Google Scholar]
  12. Morel E, Mehrpour M, Botti J, Dupont N, Hamai A, Nascimbeni AC, et al.. Autophagy: A Druggable Process. Annu Rev Pharmacol Toxicol. 2017; 57: 375–398. [CrossRef] [PubMed] [Google Scholar]
  13. Lippai M, Szatmari Z. Autophagy-from molecular mechanisms to clinical relevance. Cell Biol Toxicol. 2017; 33: 145–168. [CrossRef] [PubMed] [Google Scholar]
  14. He Q, Sha S, Sun L, Zhang J, Dong M. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/ mTOR pathway. Biochem Biophys Res Commun. 2016; 476: 196–203. [CrossRef] [Google Scholar]
  15. Kawamori R. What is the natural history of type 2 diabetes mellitus. Nihon Rinsho. 2015; 73: 363–372. [PubMed] [Google Scholar]
  16. Lin Y, Sun Z. In vivo pancreatic beta-cell-specific expression of antiaging gene Klotho: a novel approach for preserving beta-cells in type 2 diabetes. Diabetes. 2015; 64: 1444–1458. [PubMed] [Google Scholar]
  17. Wilson CM, Magnaudeix A, Yardin C, Terro F. Autophagy dysfunction and its link to Alzheimer’s disease and type II diabetes mellitus. CNS Neurol Disord Drug Targets. 2014; 13: 226–246. [CrossRef] [PubMed] [Google Scholar]
  18. Kitamura T. The role of FOXO1 in beta-cell failure and type 2 diabetes mellitus. Nat Rev Endocrinol. 2013; 9: 615–623. [CrossRef] [PubMed] [Google Scholar]
  19. Yan J, Feng Z, Liu J, Shen W, Wang Y, Wertz K, et al. Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (-)-epigallocatechin-3-gallate. J Nutr Biochem. 2012; 23: 716–724. [CrossRef] [PubMed] [Google Scholar]
  20. Rikiishi H. Autophagic and apoptotic effects of HDAC inhibitors on cancer cells. J Biomed Biotechnol. 2011; 2011: 830260. [CrossRef] [PubMed] [Google Scholar]
  21. Larsen BD, Sorensen CS. The caspase-activated DNase: apoptosis and beyond. FEBS J. 2017; 284: 1160–1170. [CrossRef] [PubMed] [Google Scholar]
  22. Debatin KM. Cell death: From initial concepts to pathways to clinical applications-Personal reflections of a clinical researcher. Biochem Biophys Res Commun. 2017; 482: 445–449. [CrossRef] [Google Scholar]
  23. Siegmund D, Lang I, Wajant H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J. 2017; 284: 1131–1159. [CrossRef] [PubMed] [Google Scholar]
  24. Maino B, Paparone S, Severini C, Ciotti MT, D’Agata V, Calis-sano P, et al.. Drug target identification at the crossroad of neuronal apoptosis and survival. Expert Opin Drug Discov. 2017; 12: 24959. [CrossRef] [Google Scholar]
  25. Bhat TA, Chaudhary AK, Kumar S, O’Malley J, Inigo JR, Kumar R, et al.. Endoplasmic reticulum-mediated unfolded protein response and mitochondrial apoptosis in cancer. Biochim Biophys Acta. 2017; 1867: 58–66. [PubMed] [Google Scholar]
  26. Yin S, Liu X, Fan L, Hu H. Mechanisms of cell death induction by food-borne mycotoxins. Crit Rev Food Sci Nutr. 2017 [Google Scholar]
  27. Nemazee D.. Mechanisms of central tolerance for B cells. Nat Rev Immunol. 2017 [PubMed] [Google Scholar]
  28. Barnhart BC, Alappat EC, Peter ME. The CD95 type I/type II model. Semin Immunol. 2003; 15: 185–193. [CrossRef] [PubMed] [Google Scholar]
  29. Schultz DR, Harrington WJJr. Apoptosis: programmed cell death at a molecular level. Semin Arthritis Rheum. 2003; 32: 345–369. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002; 296: 1635–1636. [CrossRef] [PubMed] [Google Scholar]
  31. Eldadah BA, Faden AI. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma. 2000; 17: 811–829. [CrossRef] [PubMed] [Google Scholar]
  32. Guchelaar HJ, Vermes A, Vermes I, Haanen C. Apoptosis: molecular mechanisms and implications for cancer chemotherapy. Pharm World Sci. 1997; 19: 119–125. [CrossRef] [PubMed] [Google Scholar]
  33. Tomita T. Apoptosis in pancreatic beta-islet cells in Type 2 diabetes. Bosn J Basic Med Sci. 2016; 16: 162–179. [PubMed] [Google Scholar]
  34. Kollek M, Muller A, Egle A, Erlacher M. Bcl-2 proteins in development, health, and disease of the hematopoietic system. FEBS J. 2016; 283: 2779–2810. [CrossRef] [PubMed] [Google Scholar]
  35. Moe GW, Marin-Garcia J. Role of cell death in the progression of heart failure. Heart Fail Rev. 2016; 21: 157–167. [CrossRef] [PubMed] [Google Scholar]
  36. Green DR, Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol. 2015; 7. [CrossRef] [PubMed] [Google Scholar]
  37. Mc Gee MM. Targeting the Mitotic Catastrophe Signaling Pathway in Cancer. Mediators Inflamm. 2015; 2015: 146282. [CrossRef] [PubMed] [Google Scholar]
  38. Anuradha R, Saraswati M, Kumar KG, Rani SH. Apoptosis of beta cells in diabetes mellitus. DNA Cell Biol. 2014; 33: 743–748. [CrossRef] [PubMed] [Google Scholar]
  39. Khan KH, Blanco-Codesido M, Molife LR. Cancer therapeutics: Targeting the apoptotic pathway. Crit Rev Oncol Hematol. 2014; 90: 200–219. [CrossRef] [PubMed] [Google Scholar]
  40. Yang JS, Chen GW, Hsia TC, Ho HC, Ho CC, Lin MW, et al. Diallyl disulfide induces apoptosis in human colon cancer cell line (COLO 205) through the induction of reactive oxygen species, endoplasmic reticulum stress, caspases casade and mitochondrial-dependent pathways. Food Chem Toxicol. 2009; 47: 171–179. [CrossRef] [PubMed] [Google Scholar]
  41. Liao CL, Lai KC, Huang AC, Yang JS, Lin JJ, Wu SH, et al. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem Toxicol. 2012; 50: 1734–1740. [CrossRef] [PubMed] [Google Scholar]
  42. Harada H, Grant S. Apoptosis regulators. Rev Clin Exp Hematol. 2003; 7: 117–138. [PubMed] [Google Scholar]
  43. Fil’chenkov AA. Apoptosis-reactivating agents for targeted anticancer therapy. Biomed Khim. 2013; 59: 119–143. [CrossRef] [PubMed] [Google Scholar]
  44. Chevet E, Hetz C, Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov. 2015; 5: 586–597. [CrossRef] [PubMed] [Google Scholar]
  45. Huang WW, Chiu YJ, Fan MJ, Lu HF, Yeh HF, Li KH, et al. Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma U-2 OS cells. Mol Nutr Food Res. 2010; 54: 1585–1595. [CrossRef] [PubMed] [Google Scholar]
  46. Hurley JH, Nogales E. Next-generation electron microscopy in autophagy research. Curr Opin Struct Biol. 2016; 41: 211–216. [CrossRef] [PubMed] [Google Scholar]
  47. Tooze SA. Current views on the source of the autophagosome membrane. Essays Biochem. 2013; 55: 29–38. [CrossRef] [PubMed] [Google Scholar]
  48. Eskelinen EL, Reggiori F, Baba M, Kovacs AL, Seglen PO. Seeing is believing: the impact of electron microscopy on autophagy research. Autophagy. 2011; 7: 935–956. [CrossRef] [PubMed] [Google Scholar]
  49. Delorme-Axford E, Guimaraes RS, Reggiori F, Klionsky DJ. The yeast Saccharomyces cerevisiae: an overview of methods to study autophagy progression. Methods. 2015; 75: 3–12. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  50. Guimaraes RS, Delorme-Axford E, Klionsky DJ, Reggiori F. Assays for the biochemical and ultrastructural measurement of selective and nonselective types of autophagy in the yeast Saccharomy- ces cerevisiae. Methods. 2015; 75: 141–150. [EDP Sciences] [PubMed] [Google Scholar]
  51. Villarejo-Zori B, Boya P. Autophagy and vision. Med Sci (Paris). 2017; 33: 297–304. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  52. Hurley JH, Young LN. Mechanisms of Autophagy Initiation. Annu Rev Biochem. 2017. [Google Scholar]
  53. Botbol Y, Guerrero-Ros I, Macian F. Key roles of autophagy in regulating T-cell function. Eur J Immunol. 2016; 46: 1326–1334. [CrossRef] [PubMed] [Google Scholar]
  54. Zientara-Rytter K, Subramani S. Autophagic degradation of peroxisomes in mammals. Biochem Soc Trans. 2016; 44: 431–440. [CrossRef] [PubMed] [Google Scholar]
  55. Chang CH, Lee CY, Lu CC, Tsai FJ, Hsu YM, Tsao JW, et al. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol. 2017; 50: 873–882. [CrossRef] [PubMed] [Google Scholar]
  56. Yuan CH, Horng CT, Lee CF, Chiang NN, Tsai FJ, Lu CC, et al. Epigallocatechin gallate sensitizes cisplatin-resistant oral cancer CAR cell apoptosis and autophagy through stimulating AKT/ STAT3 pathway and suppressing multidrug resistance 1 signaling. Environ Toxicol. 2017; 32: 845–855. [CrossRef] [PubMed] [Google Scholar]
  57. Hsieh MT, Chen HP, Lu CC, Chiang JH, Wu TS, Kuo DH, et al. The novel pterostilbene derivative ANK-199 induces autophagic cell death through regulating PI3 kinase class III/beclin 1/Atgrelated proteins in cisplatinresistant CAR human oral cancer cells. Int J Oncol. 2014; 45: 782–794. [CrossRef] [PubMed] [Google Scholar]
  58. Huang AC, Lien JC, Lin MW, Yang JS, Wu PP, Chang SJ, et al. Tetrandrine induces cell death in SAS human oral cancer cells through caspase activation-dependent apoptosis and LC3-I and LC3-II activation-dependent autophagy. Int J Oncol. 2013; 43: 485–494. [CrossRef] [PubMed] [Google Scholar]
  59. Huang WW, Tsai SC, Peng SF, Lin MW, Chiang JH, Chiu YJ, et al. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/ cyclin B in SK-HEP-1 human hepatic cancer cells. Int J Oncol. 2013; 42: 2069–2077. [CrossRef] [PubMed] [Google Scholar]
  60. Lin C, Tsai SC, Tseng MT, Peng SF, Kuo SC, Lin MW, et al. AKT serine/threonine protein kinase modulates baicalin-triggered autophagy in human bladder cancer T24 cells. Int J Oncol. 2013; 42: 993–1000. [CrossRef] [PubMed] [Google Scholar]
  61. Liu CY, Yang JS, Huang SM, Chiang JH, Chen MH, Huang LJ, et al. Smh-3 induces G(2)/M arrest and apoptosis through calcium-mediated endoplasmic reticulum stress and mitochondrial signaling in human hepatocellular carcinoma Hep3B cells. Oncol Rep. 2013; 29: 751–762. [CrossRef] [PubMed] [Google Scholar]
  62. Tsai SC, Yang JS, Peng SF, Lu CC, Chiang JH, Chung JG, et al. Bufalin increases sensitivity to AKT/mTOR-induced autophagic cell death in SK-HEP-1 human hepatocellular carcinoma cells. Int J Oncol. 2012; 41: 1431–1442. [CrossRef] [PubMed] [Google Scholar]
  63. Lv XX, Liu SS, Hu ZW. Autophagy-inducing natural compounds: a treasure resource for developing therapeutics against tissue fibrosis. J Asian Nat Prod Res. 2017; 19: 101–108. [CrossRef] [PubMed] [Google Scholar]
  64. Wu DJ, Adamopoulos IE. Autophagy and autoimmunity. Clin Immunol. 2017; 176: 55–62. [CrossRef] [PubMed] [Google Scholar]
  65. Papandreou ME, Tavernarakis N. Autophagy and the endo/exosomal pathways in health and disease. Biotechnol J. 2017; 12. [CrossRef] [Google Scholar]
  66. Tan YQ, Zhang J, Zhou G. Autophagy and its implication in human oral diseases. Autophagy. 2017; 13: 225–236. [CrossRef] [PubMed] [Google Scholar]
  67. Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis. Oncogene. 2017; 36: 1619–1630. [CrossRef] [PubMed] [Google Scholar]
  68. Li Q, Liu Y, Sun M. Autophagy and Alzheimer’s Disease. Cell Mol Neurobiol. 2017; 37: 377–388. [CrossRef] [PubMed] [Google Scholar]
  69. Zimmermann A, Kainz K, Andryushkova A, Hofer S, Madeo F, Carmona-Gutierrez D. Autophagy: one more Nobel Prize for yeast. Microb Cell. 2016; 3: 579–581. [CrossRef] [PubMed] [Google Scholar]
  70. Munz C. The Autophagic Machinery in Viral Exocytosis. Front Microbiol. 2017; 8: 269. [CrossRef] [PubMed] [Google Scholar]
  71. Palleria C, Leporini C, Maida F, Succurro E, De Sarro G, Arturi F, et al. Potential effects of current drug therapies on cognitive impairment in patients with type 2 diabetes. Front Neuroendocrinol. 2016; 42: 76–92. [CrossRef] [PubMed] [Google Scholar]
  72. Xue LY, Chiu SM, Azizuddin K, Joseph S, Oleinick NL. The death of human cancer cells following photodynamic therapy: apoptosis competence is necessary for Bcl-2 protection but not for induction of autophagy. Photochem Photobiol. 2007; 83: 1016–1023. [CrossRef] [PubMed] [Google Scholar]
  73. Lavallard VJ, Meijer AJ, Codogno P, Gual P. Autophagy, signaling and obesity. Pharmacol Res. 2012; 66: 513–525. [CrossRef] [PubMed] [Google Scholar]
  74. Meijer AJ, Codogno P. Autophagy: regulation and role in disease. Crit Rev Clin Lab Sci. 2009; 46: 210–240. [CrossRef] [PubMed] [Google Scholar]
  75. Yan L, Sadoshima J, Vatner DE, Vatner SF. Autophagy: a novel protective mechanism in chronic ischemia. Cell Cycle. 2006; 5: 1175–1177. [CrossRef] [PubMed] [Google Scholar]
  76. Fu D, Yu JY, Yang S, Wu M, Hammad SM, Connell AR, et al. Survival or death: a dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy. Diabetologia. 2016; 59: 2251–2261. [PubMed] [Google Scholar]
  77. Kabbage M, Williams B, Dickman MB. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Scle-rotinia sclerotiorum. PLoS Pathog. 2013; 9: e1003287. [CrossRef] [Google Scholar]
  78. Harr MW, Distelhorst CW. Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol. 2010; 2: a005579. [PubMed] [Google Scholar]
  79. Tyler MA, Ulasov IV, Lesniak MS. Cancer cell death by design: apoptosis, autophagy and glioma virotherapy. Autophagy. 2009; 5: 856–857. [CrossRef] [PubMed] [Google Scholar]
  80. Ricci MS, Zong WX. Chemotherapeutic approaches for targeting cell death pathways. Oncologist. 2006; 11: 342–357. [PubMed] [Google Scholar]
  81. Mizumura K, Maruoka S, Gon Y, Choi AM, Hashimoto S. The role of necroptosis in pulmonary diseases. Respir Investig. 2016; 54: 407–412. [CrossRef] [Google Scholar]
  82. Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ. 2014; 21: 39–49. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  83. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 2013; 288: 31268–31279. [CrossRef] [PubMed] [Google Scholar]
  84. Morgan MJ, Liu ZG. Programmed cell death with a necrotic-like phenotype. Biomol Concepts. 2013; 4: 259–275. [CrossRef] [PubMed] [Google Scholar]
  85. Linkermann A, De Zen F, Weinberg J, Kunzendorf U, Krautwald S. Programmed necrosis in acute kidney injury. Nephrol Dial Transplant. 2012; 27: 3412–3419. [CrossRef] [PubMed] [Google Scholar]
  86. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012; 150: 339–350. [PubMed] [Google Scholar]
  87. Andon FT, Fadeel B. Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials. Acc Chem Res. 2013; 46: 733–742. [CrossRef] [PubMed] [Google Scholar]
  88. Galluzzi L, Kepp O, Kroemer G. RIP kinases initiate programmed necrosis. J Mol Cell Biol. 2009; 1: 8–10. [CrossRef] [PubMed] [Google Scholar]
  89. Conrad M, Angeli JP, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2016; 15: 348–366. [CrossRef] [PubMed] [Google Scholar]
  90. Liu H, He Z, Simon HU. Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin Cancer Biol. 2013; 23: 352–360. [CrossRef] [PubMed] [Google Scholar]
  91. Belanger M, Rodrigues PH, Dunn WAJr., Progulske-Fox A. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells. Autophagy. 2006; 2: 165–170. [CrossRef] [PubMed] [Google Scholar]
  92. Yang Y, Liang C. MicroRNAs: an emerging player in autophagy. ScienceOpen Res. 2015; 2015. [PubMed] [Google Scholar]
  93. Qi W, Liang W, Jiang H, Miuyee Waye M. The function of miRNA in hepatic cancer stem cell. Biomed Res Int. 2013; 2013: 358902. [Google Scholar]
  94. Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology. 2016; 17: 655–680. [Google Scholar]
  95. Kume S, Koya D. Autophagy: A Novel Therapeutic Target for Diabetic Nephropathy. Diabetes Metab J. 2015; 39: 451–460. [CrossRef] [PubMed] [Google Scholar]
  96. Cetrullo S, D’Adamo S, Tantini B, Borzi RM, Flamigni F. mTOR, AMPK, and Sirt1: Key Players in Metabolic Stress Management. Crit Rev Eukaryot Gene Expr. 2015; 25: 59–75. [CrossRef] [PubMed] [Google Scholar]
  97. Dunlop EA, Tee AR. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol. 2014; 36: 121–129. [CrossRef] [PubMed] [Google Scholar]
  98. Sridharan S, Jain K, Basu A. Regulation of autophagy by kinases. Cancers (Basel) 2011; 3: 2630–2654. [CrossRef] [PubMed] [Google Scholar]
  99. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011; 147: 728–741. [PubMed] [Google Scholar]
  100. Hou WH, Li CY, Chen LH, Wang LY, Kuo KN, Shen HN, et al. Prevalence of hand syndromes among patients with diabetes mellitus in Taiwan: A population-based study. J Diabetes. 2016. [Google Scholar]
  101. Chen SY, Hsu YM, Lin YJ, Huang YC, Chen CJ, Lin WD, et al Current concepts regarding developmental mechanisms in diabetic retinopathy in Taiwan. Biomedicine (Taipei). 2016; 6: 7. [CrossRef] [PubMed] [Google Scholar]
  102. Middleton P, Crowther CA, Simmonds L. Different intensities of glycaemic control for pregnant women with pre-existing diabetes. Cochrane Database Syst Rev. 2016CD008540. [Google Scholar]
  103. Adeshara KA, Diwan AG, Tupe RS. Diabetes and Complications: Cellular Signaling Pathways, Current Understanding and Targeted Therapies. Curr Drug Targets. 2016; 17: 1309–1328. [CrossRef] [PubMed] [Google Scholar]
  104. Zatalia SR, Sanusi H. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Med Indones. 2013; 45: 141–147. [PubMed] [Google Scholar]
  105. Resl M, Clodi M. Diabetes and cardiovascular complications. Wien Med Wochenschr. 2010; 160: 3–7. [CrossRef] [PubMed] [Google Scholar]
  106. Hahr AJ, Molitch ME. Diabetes, cardiovascular risk and nephropathy. Cardiol Clin. 2010; 28: 467–475. [CrossRef] [PubMed] [Google Scholar]
  107. Balakumar P, Maung UK, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016; 113: 600–609. [CrossRef] [PubMed] [Google Scholar]
  108. Nowotny K, Jung T, Hohn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015; 5: 194–222. [CrossRef] [PubMed] [Google Scholar]
  109. Ministry of Health and Welfare ROC (Taiwan). http://www.mohw.gov.tw/news/572256044. Published. 2015. Updated Accessed. [Google Scholar]
  110. Boldison J, Wong FS. Immune and Pancreatic beta Cell Interactions in Type 1 Diabetes. Trends Endocrinol Metab. 2016. [Google Scholar]
  111. Kesavadev J. Insulin pump therapy in pregnancy. J Pak Med Assoc. 2016; 66: S39–S44. [PubMed] [Google Scholar]
  112. Zou D, Ye Y, Zou N, Yu J. Analysis of risk factors and their interactions in type 2 diabetes mellitus: A cross-sectional survey in Guilin, China. J.Diabetes Investig. 2016. [Google Scholar]
  113. Hotta-Iwamura C, Tarbell KV. Type 1 diabetes genetic susceptibility and dendritic cell function: potential targets for treatment. J Leukoc Biol. 2016; 100: 65–80. [CrossRef] [PubMed] [Google Scholar]
  114. Sakai S, Tanimoto K, Imbe A, Inaba Y, Shishikura K, Tanimoto Y, et al. Decreased beta-Cell Function Is Associated with Reduced Skeletal Muscle Mass in Japanese Subjects without Diabetes. PLoS One. 2016; 11: e0162603. [PubMed] [Google Scholar]
  115. Honardoost M, Arefian E, Soleimani M, Soudi S, Sarookhani MR. Development of Insulin Resistance through Induction of miRNA- 135 in C2C12 Cells. Cell J. 2016; 18: 353–361. [PubMed] [Google Scholar]
  116. Rezai S, LoBue S, Henderson CE. Diabetes prevention: Reproductive age women affected by insulin resistance. Womens Health (Lond). 2016; 12: 427–432. [CrossRef] [PubMed] [Google Scholar]
  117. Arias-Loste MT, Ranchal I, Romero-Gomez M, Crespo J. Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. Int J Mol Sci. 2014; 15: 23163–23178. [CrossRef] [PubMed] [Google Scholar]
  118. Viecceli C, Remonti LR, Hirakata VN, Mastella LS, Gnielka V, Oppermann ML, et al. Weight gain adequacy and pregnancy outcomes in gestational diabetes: a meta-analysis. Obes Rev. 2017; 18: 567–580. [CrossRef] [PubMed] [Google Scholar]
  119. Logan KM, Gale C, Hyde MJ, Santhakumaran S, Modi N. Diabetes in pregnancy and infant adiposity: systematic review and metaanalysis. Arch Dis Child Fetal Neonatal Ed. 2017; 102: F65–F72. [CrossRef] [PubMed] [Google Scholar]
  120. Tian J, Lian F, Yang L, Tong X. Evaluation of Chinese Herbal Medicine Jinlida in Type 2 Diabetes Patients based on Stratification: Results of Subgroup Analysis from 12-Week Trial. J Diabetes. 2017. [Google Scholar]
  121. Garabadu D, Krishnamurthy S. Metformin attenuates hepatic insulin resistance in type-2 diabetic rats through PI3 K/Akt/GLUT-4 signalling independent to bicuculline-sensitive GABAA receptor stimulation. Pharm Biol. 2017; 55: 722–728. [CrossRef] [PubMed] [Google Scholar]
  122. Eaton SB, Eaton SB. Physical Inactivity, Obesity, and Type 2 Diabetes: An Evolutionary Perspective. Res Q Exerc Sport. 2017; 88: 1–8. [CrossRef] [PubMed] [Google Scholar]
  123. Wong P, Weiner MG, Hwang WT, Yang YX. Insulin therapy and colorectal adenomas in patients with diabetes mellitus. Cancer Epidemiol Biomarkers Prev. 2012; 21: 1833–1840. [CrossRef] [PubMed] [Google Scholar]
  124. Yang YX, Hennessy S, Lewis JD. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology. 2004; 127: 1044–1050. [CrossRef] [PubMed] [Google Scholar]
  125. Marrif HI, Al-Sunousi SI. Pancreatic beta Cell Mass Death. Front Pharmacol. 2016; 7: 83. [CrossRef] [PubMed] [Google Scholar]
  126. Lee MS. Role of islet beta cell autophagy in the pathogenesis of diabetes. Trends Endocrinol Metab. 2014; 25: 620–627. [CrossRef] [PubMed] [Google Scholar]
  127. Wang Y, Li YB, Yin JJ, Wang Y, Zhu LB, Xie GY, et al. Autophagy regulates inflammation following oxidative injury in diabetes. Autophagy. 2013; 9: 272–277. [CrossRef] [PubMed] [Google Scholar]
  128. Hur KY, Jung HS, Lee MS.. Role of autophagy in beta-cell function and mass. Diabetes Obes Metab. 2010; 12 Suppl 2: 20–26. [CrossRef] [Google Scholar]
  129. Montane J, Cadavez L, Novials A. Stress and the inflammatory process: a major cause of pancreatic cell death in type 2 diabetes. Diabetes Metab Syndr Obes. 2014; 7: 25–34. [PubMed] [Google Scholar]
  130. Quan W, Jo EK, Lee MS.. Role of pancreatic beta-cell death and inflammation in diabetes. Diabetes Obes Metab. 2013; 15: Suppl 3 141–151. [CrossRef] [PubMed] [Google Scholar]
  131. Lee MS, Kim KA, Kim HS. Role of pancreatic beta-cell death and cell death-associated inflammation in diabetes. Curr Mol Med. 2012; 12: 1297–1310. [CrossRef] [PubMed] [Google Scholar]
  132. Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic beta cells from human islet amyloid polypeptide- induced toxicity. J Clin Invest. 2014; 124: 3489–3500. [CrossRef] [PubMed] [Google Scholar]
  133. Kim J, Cheon H, Jeong YT, Quan W, Kim KH, Cho JM, et al. Amyloidogenic peptide oligomer accumulation in autophagy-deficient beta cells induces diabetes. J Clin Invest. 2014; 124: 3311–3324. [CrossRef] [PubMed] [Google Scholar]
  134. Lo MC, Chen MH, Lee WS, Lu CI, Chang CR, Kao SH, et al Nepsilon-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from beta-cells. Am J Physiol Endocrinol Metab. 2015; 309: E829–E839. [CrossRef] [PubMed] [Google Scholar]
  135. Las G, Shirihai OS.. The role of autophagy in beta-cell lipotoxicity and type 2 diabetes. Diabetes Obes Metab. 2010; 12 Suppl 2: 15–19. [CrossRef] [PubMed] [Google Scholar]
  136. Fujitani Y, Kawamori R, Watada H. The role of autophagy in pancreatic beta-cell and diabetes. Autophagy. 2009; 5: 280–282. [CrossRef] [PubMed] [Google Scholar]
  137. Abe H, Uchida T, Hara A, Mizukami H, Komiya K, Koike M, et al. Exendin-4 improves beta-cell function in autophagy-deficient beta- cells. Endocrinology. 2013; 154: 4512–4524. [CrossRef] [PubMed] [Google Scholar]
  138. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008; 8: 325–332. [CrossRef] [Google Scholar]
  139. Demirtas L, Guclu A, Erdur FM, Akbas EM, Ozcicek A, Onk D, et al. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus. Indian J Med Res. 2016; 144: 515–524. [PubMed] [Google Scholar]
  140. Pabon MA, Ma KC, Choi AM. Autophagy and Obesity-Related Lung Disease. Am J Respir Cell Mol Biol. 2016; 54: 636–646. [CrossRef] [PubMed] [Google Scholar]
  141. Wang S, Sun QQ, Xiang B, Li XJ. Pancreatic islet cell autophagy during aging in rats. Clin Invest Med. 2013; 36: E72–E80. [CrossRef] [Google Scholar]
  142. Bartolome A, Guillen C, Benito M. Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic beta cell death. Autophagy. 2012; 8: 1757–1768. [CrossRef] [PubMed] [Google Scholar]
  143. Masini M, Lupi R, Bugliani M, Boggi U, Filipponi F, Masiello P, et al. A role for autophagy in beta-cell life and death. Islets. 2009; 1: 157–159. [EDP Sciences] [PubMed] [Google Scholar]
  144. Jiang Y, Huang W, Wang J, Xu Z, He J, Lin X, et al. Metformin plays a dual role in MIN6 pancreatic beta cell function through AMPK-dependent autophagy. Int J Biol Sci. 2014; 10: 268–277. [CrossRef] [PubMed] [Google Scholar]
  145. Masini M, Bugliani M, Lupi R, del Guerra S, Boggi U, Filipponi F, et al. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia. 2009; 52: 1083–1086. [PubMed] [Google Scholar]
  146. Zakeri Z, Melendez A, Lockshin RA. Detection of autophagy in cell death. Methods Enzymol. 2008; 442: 289–306. [CrossRef] [PubMed] [Google Scholar]
  147. Gurusamy N, Das DK. Detection of cell death by autophagy. Methods Mol Biol. 2009; 559: 95–103. [CrossRef] [PubMed] [Google Scholar]
  148. Yu FS, Yu CS, Chen JC, Yang JL, Lu HF, Chang SJ, et al. Tetrandrine induces apoptosis via caspase-8, -9, and -3 and poly (ADP ribose) polymerase dependent pathways and autophagy through beclin-1/ LC3-I, II signaling pathways in human oral cancer HSC-3 cells. Environ Toxicol. 2016; 31: 395–406. [CrossRef] [PubMed] [Google Scholar]
  149. Scheen AJ. Pharmacotherapy of ‘treatment resistant’ type 2 diabetes. Expert Opin Pharmacother. 2017; 18: 503–515. [CrossRef] [PubMed] [Google Scholar]
  150. Scheen AJ. DPP-4 inhibitor plus SGLT-2 inhibitor as combination therapy for type 2 diabetes: from rationale to clinical aspects. Expert Opin Drug Metab Toxicol. 2016; 12: 1407–1417. [CrossRef] [PubMed] [Google Scholar]
  151. Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab. 2016; 18: 203–216. [CrossRef] [PubMed] [Google Scholar]
  152. Triplitt C, Solis-Herrera C. GLP-1 Receptor Agonists: Practical Considerations for Clinical Practice. Diabetes Educ. 2015; 41: 32S–46S. [CrossRef] [PubMed] [Google Scholar]
  153. Altaf QA, Barnett AH, Tahrani AA. Novel therapeutics for type 2 diabetes: insulin resistance. Diabetes Obes Metab. 2015; 17: 31934. [CrossRef] [Google Scholar]
  154. Pawlyk AC, Giacomini KM, McKeon C, Shuldiner AR, Florez JC. Metformin pharmacogenomics: current status and future directions. Diabetes. 2014; 63: 2590–2599. [PubMed] [Google Scholar]
  155. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012; 122: 253–270. [CrossRef] [PubMed] [Google Scholar]
  156. Schroner Z, Javorsky M, Kozarova M, Tkac I. Pharmacogenetics of oral antidiabetic treatment. Bratisl Lek Listy. 2011; 112: 441–446. [PubMed] [Google Scholar]
  157. Shah IM, Mackay SP, McKay GA. Therapeutic strategies in the treatment of diabetic nephropathy-a translational medicine approach. Curr Med Chem. 2009; 16: 997–1016. [CrossRef] [PubMed] [Google Scholar]
  158. Caballero AE. Long-term studies of treatments for type 2 diabetes. Postgrad Med. 2017; 129: 352–365. [CrossRef] [PubMed] [Google Scholar]
  159. Mayerson AB, Inzucchi SE. Type 2 diabetes therapy. A pathophysiologically based approach. Postgrad Med. 2002; 111: 83–84, 87-92, 95. [CrossRef] [Google Scholar]
  160. Quillen DM, Kuritzky L. Type 2 diabetes management: a comprehensive clinical review of oral medications. Compr Ther. 2002; 28: 50–61. [CrossRef] [PubMed] [Google Scholar]
  161. Hemmingsen B, Schroll JB, Lund SS, Wetterslev J, Gluud C, Vaag A et al.. Sulphonylurea monotherapy for patients with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2013CD009008. [Google Scholar]
  162. Lamos EL, Stein SA, Davis SN. Sulfonylureas and meglitinides: historical and contemporary issues. Panminerva Med. 2013; 55: 239–251. [PubMed] [Google Scholar]
  163. Drugs for type 2 diabetes. Med Lett Drugs Ther. 2017; 59: 9–18. [PubMed] [Google Scholar]
  164. Feng Y, Yang H. Metformin-a potentially effective drug for gestational diabetes mellitus: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 20161–20168. [Google Scholar]
  165. Liu F, Yan L, Wang Z, Lu Y, Chu Y, Li X, et al. Metformin therapy and risk of colorectal adenomas and colorectal cancer in type 2 diabetes mellitus patients: A systematic review and meta-analysis. Oncotarget. 2017; 8: 16017–16026. [PubMed] [Google Scholar]
  166. Tan MH, Alquraini H, Mizokami-Stout K, MacEachern M. Metformin: From Research to Clinical Practice. Endocrinol Metab Clin North Am. 2016; 45: 819–843. [CrossRef] [PubMed] [Google Scholar]
  167. Anabtawi A, Miles JM. Metformin: Nonglycemic Effects and Potential Novel Indications. Endocr Pract. 2016; 22: 999–1007. [CrossRef] [PubMed] [Google Scholar]
  168. Katsuta H, Ishida H.. Alpha glucosidase inhibitor. Nihon Rinsho. 2006; 64 Suppl 9: 637–645. [Google Scholar]
  169. Tielmans A, Virally M, Coupaye M, Laloi-Michelin M, Meas T, Guillausseau PJ. Drug treatment in type 2 diabetes (part 2). Presse Med. 2007; 36: 467–474. [CrossRef] [PubMed] [Google Scholar]
  170. Baba S. Pioglitazone: a review of Japanese clinical studies. Curr Med Res Opin. 2001; 17: 166–189. [CrossRef] [PubMed] [Google Scholar]
  171. Smith JD, Mills E, Carlisle SE. Treatment of Pediatric Type 2 Diabetes. Ann Pharmacother. 2016; 50: 768–777. [CrossRef] [PubMed] [Google Scholar]
  172. Klein J, Charach R, Sheiner E. Treating diabetes during pregnancy. Expert Opin Pharmacother. 2015; 16: 357–368. [PubMed] [Google Scholar]
  173. Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014; 20: 573–591. [CrossRef] [Google Scholar]
  174. Hostalek U, Gwilt M, Hildemann S. Therapeutic Use of Metformin in Prediabetes and Diabetes Prevention. Drugs. 2015; 75: 107194. [Google Scholar]
  175. Ryan G. Dipeptidyl peptidase-4 inhibitor use in patients with type 2 diabetes and cardiovascular disease or risk factors. Postgrad Med. 2015; 127: 842–854. [CrossRef] [PubMed] [Google Scholar]
  176. Mamza J, Marlin C, Wang C, Chokkalingam K, Idris I. DPP-4 inhibitor therapy and bone fractures in people with Type 2 diabetes-A systematic review and meta-analysis. Diabetes Res Clin Pract. 2016; 116: 288–298. [CrossRef] [PubMed] [Google Scholar]
  177. Wright JJ, Tylee TS. Pharmacologic Therapy of Type 2 Diabetes. Med Clin North Am. 2016; 100: 647–663. [CrossRef] [PubMed] [Google Scholar]
  178. Sharma SK, Panneerselvam A, Singh KP, Parmar G, Gadge P, Swami OC. Teneligliptin in management of type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2016; 9: 251–260. [CrossRef] [PubMed] [Google Scholar]
  179. Tella SH, Rendell MS. Glucagon-like polypeptide agonists in type 2 diabetes mellitus: efficacy and tolerability, a balance. Ther Adv Endocrinol Metab. 2015; 6: 109–134. [CrossRef] [PubMed] [Google Scholar]
  180. Eng C, Kramer CK, Zinman B, Retnakaran R. Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and metaanalysis. Lancet. 2014; 384: 2228–2234. [CrossRef] [PubMed] [Google Scholar]
  181. Rowzee AM, Cawley NX, Chiorini JA, Di Pasquale G. Glucagonlike peptide-1 gene therapy. Exp Diabetes Res. 2011; 2011: 601047. [CrossRef] [Google Scholar]
  182. Gallwitz B. Glucagon-like peptide-1 analogues for Type 2 diabetes mellitus: current and emerging agents. Drugs. 2011; 71: 1675–1688. [CrossRef] [PubMed] [Google Scholar]
  183. Tzefos M, Olin JL. Glucagon-like peptide-1 analog and insulin combination therapy in the management of adults with type 2 diabetes mellitus. Ann Pharmacother. 2010; 44: 1294–1300. [CrossRef] [PubMed] [Google Scholar]
  184. Mundil D, Cameron-Vendrig A, Husain M. GLP-1 receptor agonists: a clinical perspective on cardiovascular effects. Diab Vasc Dis Res. 2012; 9: 95–108. [CrossRef] [PubMed] [Google Scholar]
  185. Trujillo JM, Nuffer W. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents. Pharmacotherapy. 2014; 34: 1174–1186. [PubMed] [Google Scholar]
  186. Vos RC, van Avendonk MJ, Jansen H, Goudswaard AN, van den Donk M, Gorter K, et al. Insulin monotherapy compared with the addition of oral glucose-lowering agents to insulin for people with type 2 diabetes already on insulin therapy and inadequate glycaemic control. Cochrane Database Syst Rev. 2016; 9: CD006992. [PubMed] [Google Scholar]
  187. Barnosky A, Shah L, Meah F, Emanuele N, Emanuele MA, Mazhari A. A primer on concentrated insulins: what an internist should know. Postgrad Med. 2016 ; 128: 381–390. [CrossRef] [PubMed] [Google Scholar]
  188. Millstein R, Becerra NM, Shubrook JH. Insulin pumps: Beyond basal-bolus. Cleve Clin J Med. 2015; 82: 835–842. [CrossRef] [PubMed] [Google Scholar]
  189. Meah F, Juneja R. Insulin tactics in type 2 diabetes. Med Clin North Am. 2015; 99: 157–186. [CrossRef] [PubMed] [Google Scholar]
  190. Keating GM. Insulin detemir: a review of its use in the management of diabetes mellitus. Drugs. 2012; 72: 2255–2287. [CrossRef] [Google Scholar]
  191. Meneghini LF. Insulin therapy for type 2 diabetes. Endocrine. 2013; 43: 529–534. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.