Open Access
Issue
BioMedicine
Volume 7, Number 2, June 2017
Article Number 11
Number of page(s) 6
DOI https://doi.org/10.1051/bmdcn/2017070204
Published online 14 June 2017
  1. Pekka J, Erkki V, Jaakko T, Pekka P. Age, Cardiovascular risk factors, and coronary heart disease. Circulation. 1999, 99, 1165–1172. [CrossRef] [PubMed] [Google Scholar]
  2. Mosca L, Collins P, Herrington DM, Mendelsohn ME, Pasternak RC, Robertson RM, et al. American Heart Association. Hormone Replacement Therapy and Cardiovascular Disease. Circulation. 2001, 104 (4), 499–503. [CrossRef] [PubMed] [Google Scholar]
  3. Patten Richard D, Richard K. Estrogen replacement and cardiomyocyte protection. Trends Cardiovasc Med. 2006, 16, 69–75. [CrossRef] [PubMed] [Google Scholar]
  4. Rosano GM, Vitale C, Silvestri A, Fini M. Hormone replacement therapy and cardioprotection: the end of the tale?. Ann N Y Acad Sci. 2003, 997, 351–357. [CrossRef] [PubMed] [Google Scholar]
  5. Gustafsson JA.. Estrogen receptor β - a new dimension in estrogen mechanism of action. J Endocrinol. 1999, 163, 379–383. [CrossRef] [PubMed] [Google Scholar]
  6. Moras D, Gronemeyer H. The nuclear receptor ligand-binding domain: structure and function. Curr Opin Cell Biol. 1998, 384–391. [CrossRef] [PubMed] [Google Scholar]
  7. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007, 87, 905–931. [CrossRef] [PubMed] [Google Scholar]
  8. Schwabe JW, Neuhaus D, Rhodes D. Solution structure of the DNA- binding domain of the oestrogen receptor. Nature. 1990, 29, 45861. [Google Scholar]
  9. Chunyan Z, Karin D-W, Jan-A G. Estrogen receptor β: an overview and update. Nucl Recept Signal. 2008, 6, e003. [PubMed] [Google Scholar]
  10. Eric P, Jeffery A, Harriet S, Tudor O, Larry S, Helen H. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu. Rev. Physiol. 2008, 70, 165–190. [CrossRef] [PubMed] [Google Scholar]
  11. Kim JK, Levin ER. Estrogen signaling in the cardiovascular system. Nucl Recept Signal. 2006, 4e013. [Google Scholar]
  12. Richard D, Isaac P, Mark J, Aronovitz Jason B, Flore C, et al. 17β-Estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of Phospho-inositide-3 kinase/Akt signaling. Circulation Research. 2004, 95, 692. [CrossRef] [PubMed] [Google Scholar]
  13. Lannigan DA. Estrogen receptor phosphorylation. Steroid. 2003, 68 (1), 1–9. [CrossRef] [Google Scholar]
  14. Eric P, Matthias B. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER. Prostaglandins other Lipid Mediat. 2009, 89, 89–97. [CrossRef] [PubMed] [Google Scholar]
  15. Bhupathy P, Haines CD, Leinwand LA. Influence of sex hormones and phytoestrogens on heart disease in men and women. Womens Health. 2010, 6, 77–95. [Google Scholar]
  16. Weng YS, Kuo WW, Lin YM, Kuo CH, Tzang BS, Tsai FJ, et al. Danshen mediates through estrogen receptors to activate Akt and inhibit apoptosis effect of Leu27IGF-II-induced IGF-II receptor signaling activation in cardiomyoblasts. Food Chem Toxicol. 2013, 56, 28–39. [CrossRef] [PubMed] [Google Scholar]
  17. Huang CY, Chen SY, Fu RH, Huang YC, Chen SY, Shyu WC, et al. Differentiation of embryonic stem cells into cardiomyocytes used to investigate the cardioprotective effect of salvianolic acid B through BNIP3 involved pathway. Cell Transplant. 2015. [Google Scholar]
  18. Henry LA, Witt DM. Resveratrol: phytoestrogen effects on reproductive physiology and behavior in female rats. Horm Behav. 2002 , 41, 220–228. [CrossRef] [PubMed] [Google Scholar]
  19. Lin CH, Lin CC, Ting WJ, Pai PY, Kuo CH, Ho TJ, et al. Resveratrol enhanced FOXO3 phosphorylation via synergetic activation of SIRT1 and PI3K/Akt signaling to improve the effects of exercise in elderly rat hearts. Age (Dordr) 2014, 36, 9705. [Google Scholar]
  20. Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY. EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats. Acta Pharmacol Sin. 2007, 28: 191–201. [CrossRef] [PubMed] [Google Scholar]
  21. Ou HC, Song TY, Yeh YC, Huang CY, Yang SF, Chiu TH, et al. EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling. J Appl Physiol. 2010, 108: 1745–1756. [CrossRef] [PubMed] [Google Scholar]
  22. Guo Q, Zhao B, Li M, Shen S, Xin W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta. 1996 , 1304: 210–222. [CrossRef] [PubMed] [Google Scholar]
  23. Tang WJ, Hu CP, Chen MF, Deng PY, Li YJ. Epigallocatechin gal-late preserves endothelial function by reducing the endogenous nitric oxide synthase inhibitor level. Can J Physiol Pharmacol. 2006, 84: 163–171. [CrossRef] [PubMed] [Google Scholar]
  24. Ludwig A, Lorenz M, Grimbo N, Steinle F, Meiners S, Bartsch C, et al. The tea flavonoid epigallocatechin-3-gallate reduces cytokine- induced VCAM-1 expression and monocyte adhesion to endothelial cells. Biochem Biophys Res Commun. 2004, 316: 659–665. [CrossRef] [Google Scholar]
  25. Raetx CR, Whtifield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002, 71, 635–700. [CrossRef] [PubMed] [Google Scholar]
  26. Tavener SA, Kubes P. Is there a role for cardiomyocyte toll-like receptor 4 in endotoxemia?. Trends Cardiovasc Med. 2005 , 15, 153–157. [CrossRef] [PubMed] [Google Scholar]
  27. Liu CJ, Lo JF, Kuo CH, Chu CH, Chen LM, Tsai FJ, et al. Akt Mediates 17beta-estradiol and/or estrogen receptor alpha inhibition of LPS-induced tumor necrosis factor-alpha expression and myocardial cell apoptosis by suppressing the JNK1/2-NFkappaB pathway. J Cell Mol Med. 2009, 13 (9b), 3655–3667. [CrossRef] [PubMed] [Google Scholar]
  28. Theo P, Manfred N, Tertia J, Virginija J, Ludwig N. Estrogen effects in the myocardium: inhibition of NF-kB DNA binding by estrogen receptor-α and -β. Biochem Biophys Res Commun. 2001, 286 (5), 1153–1157. [CrossRef] [Google Scholar]
  29. Sun B, Xiao J, Sun XB, Wu Y. Notoginsenoside R1 attenuates cardiac dysfunction in endotoxemic mice: an insight into oestrogen receptor activation and PI3K/Akt signalling. Br J Pharmacol. 2013, 168 (7), 1758–1770. [CrossRef] [PubMed] [Google Scholar]
  30. Hao E, Lang F, Chen Y, Zhang H, Cong X, Shen X, et al. Resveratrol Alleviates Endotoxin-Induced Myocardial Toxicity via the Nrf2 Transcription Factor. PLoS One. 2013, 8 (7), e69452. [PubMed] [Google Scholar]
  31. Zhang T, Yan T, Du J, Wang S, Yang H.. Apigenin attenuates heart injury in lipopolysaccharide-induced endotoxemic model by suppressing sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Chem Biol Interact. 2014, S0009-2797 (14), 00406–2. [Google Scholar]
  32. Matori H, Umar S, Nadadur RD, Sharma S, Partow-Navid R, Afkhami M, et al. Genistein, a soy phytoestrogen, reverses severe pulmonary hypertension and prevents right heart failure in rats. Hypertension. 2012; 60 (2), 425–430. [PubMed] [Google Scholar]
  33. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signaling pathways. Nat Rev Mol Cell Biol. 2006, 7 (8), 589–600. [CrossRef] [PubMed] [Google Scholar]
  34. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffith R, Kumar AP, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci. 2006, 3 (47), 17985–17990. [CrossRef] [Google Scholar]
  35. Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 2008, 40(10), 2023–2039. [CrossRef] [PubMed] [Google Scholar]
  36. Freund C, Schmidt-Ullrich R, Baurand A, Dunger S, Scheider W, Loser P, et al. Requirement of nuclear factor-kappaB in angiotensin II-and isoproterenol-induced cardiac hypertrophy in vivo. Circulation. 2005, 111 (18, 2319–2325. [CrossRef] [PubMed] [Google Scholar]
  37. Beate F, Suzanne L, Albert S, Stephan L, Burkert P, Frank S, et al. Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci. 2002, 99 (17), 11363–11368. [CrossRef] [Google Scholar]
  38. Donaldson C, Eder S, Barker C, Aronovitz MJ, Weiss AD, Hall-Porter M, et al. Estrogen attenuates left ventricular and cardiomyocyte hypertrophy by an estrogen receptor-dependent pathway that increases calcineurin degradation. Circ Res. 2009 , 104 (2), 265–275. [CrossRef] [Google Scholar]
  39. Beate F, Suzanne L, Albert S, Stephan L, Burkert P, Frank S, et al. Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc Natl Acad Sci. 2002, 99 (17), 11363–11368. [CrossRef] [Google Scholar]
  40. Filardo EJ, Quinn JA, Bland KI, FrackeltonJr. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol. 2000, 14 (10), 1649–1660. [CrossRef] [PubMed] [Google Scholar]
  41. Hu WS, Lin YM, Ho TJ, Chen RJ, Li YH, Tsai FJ, et al. Genistein suppresses the isoproterenol-treated H9c2 cardiomyoblast cell apoptosis associated with P-38, Erk1/2, JNK, and NFkB signaling protein activation. Am J Chin Med. 2013, 41 (5), 1125–1136. [CrossRef] [PubMed] [Google Scholar]
  42. Thorburn J, Thorburn A. The tyrosine kinase inhibitor, genistein, prevents alpha-adrenergic-induced cardiac muscle cell hypertrophy by inhibiting activation of the Ras-MAP kinase signaling pathway. Biochem Biophys Res Commun. 1994, 202 (3), 1586–1591. [CrossRef] [Google Scholar]
  43. Qin W, Du N, Zhang L, Wu X, Hu Y, Li X, et al. Genistein alleviates pressure overload-induced cardiac dysfunction and interstitial fibrosis in mice. Br J Pharmacol. 2014, [Epub ahead of print]. [Google Scholar]
  44. Maulik SK, Prabhakar P, Dinda AK, Seth S. Genistein prevents isoproterenol-induced cardiac hypertrophy in rats. Can J Physiol Pharmacol 2012, 90 (8), 1117–1125. [CrossRef] [PubMed] [Google Scholar]
  45. World Health Organization Department of Health Statistics and Informatics in the Information, Evidence and Research Cluster.(2004). The global burden of disease 2004 update. Geneva: WHO. [Google Scholar]
  46. Antti S, Kari P, Markku K, Kenth H, Martti P, Liisa P. Apoptosis in human acute myocardial infarction. Circulation. 1997, 95, 320–323. [CrossRef] [PubMed] [Google Scholar]
  47. Yang S, Zheng R, Hu S, Ma Y, Choudhry MA, Messina JL, et al. Mechanism of cardiac depression after trauma-hemorrhage: increased cardiomyocyte IL-6 and effect of sex steroids on IL-6 regulation and cardiac function. Am J Physiol Heart Circ Physiol. 2004, 287 (5), 2183–2191. [CrossRef] [Google Scholar]
  48. Hayward CS, Kelly RP, Collins P. The roles of gender, the menopause and hormone replacement on cardiovascular function. Cardio-vasc Res. 2000, 46 (1), 28–49. [CrossRef] [Google Scholar]
  49. Yi Xu, Ivan A, Arenas Stephen A, Wayne P, Han Xu, et al. Estrogen improves cardiac recovery after ischemia/reperfusion by decreasing tumor necrosis factor α. Cardiovasc Res. 2006, 69, 836–844. [CrossRef] [PubMed] [Google Scholar]
  50. Weng YJ, Kuo WW, Kuo CH, Tung CH, Tung KC, Tsai CH, et al. BNIP3 induces IL6 and calcineurin/NFAT3 hypertrophic-related pathways in H9c2 cardiomyoblast cells. Mol Cell Biochem. 2010, 345, 241–247. [CrossRef] [PubMed] [Google Scholar]
  51. Vanden Hoek TL, Li C, Shao Z, Schumacker PT, Becker LB. Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol. 1997, 29 (9), 2571–2583. [CrossRef] [PubMed] [Google Scholar]
  52. Robin E, Guzy RD, Loor G, Iwase H, Waypa GB, Marks JD, et al. Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion. J Biol Chem. 2007, 282 (26), 1913343. [CrossRef] [Google Scholar]
  53. Liu H, Pedram A, Kim JK. Oestrogen prevents cardiomyocyte apoptosis by suppressing p38α-mediated activation of p53 and by down-regulating p53 inhibition on p38β. Cardiovas Res. 2011, 89 (1), 11928. [Google Scholar]
  54. Lin J, Steenbergen C, Murphy E, Sun J. Estrogen receptor-β activation results in S-nitrosylation of proteins involved in cardioprotection. Circulation 2009, 120 (3), 245–254. [CrossRef] [PubMed] [Google Scholar]
  55. Urata Y, Ihara Y, Murata H, Goto S, Koji T, Yudoi J, et al. 17Beta-estradiol protects against oxidative stress-induced cell death through the glutathione/glutaredoxin-dependent redox regulation of Akt in myocardiac H9c2 cells. J Biol Chem. 2006, 281 (19), 13092–02. [CrossRef] [PubMed] [Google Scholar]
  56. Weil BR, Manukan MC, Hermann JL, Wang Y, Abaranrll AM, Poynter JA, et al. Signaling via GPR30 protects the myocardium from ischemia/reperfusion injury. Surgery. 2010, 148 (2), 436–443. [PubMed] [Google Scholar]
  57. Zhai P, Eurell TE, Cotthaus RP, Jeffery EH, Bahr JM, Gross DR. Effects of dietary phytoestrogen on global myocardial ischemia-reperfusion injury in isolated female rat hearts. Am J Physiol Heart Circ Physiol. 2001, 281 (3), H1223–H1232. [CrossRef] [PubMed] [Google Scholar]
  58. Aneja R, Hake PW, Burroughs TJ, Denenberg AG, Wong HR, Zingarelli B. Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol Med. 2004, 10 (1-6), 55–62. [CrossRef] [PubMed] [Google Scholar]
  59. Deodato B, Altavilla D, Squadrito G, Campo GM, Arlotta M, Minutoli L, et al. Cardioprotection by the phytoestrogen genistein in experimental myocardial ischaemia-reperfusion injury. Br J Pharmacol. 1999, 128 (8), 1683–1690. [CrossRef] [PubMed] [Google Scholar]
  60. Ji ES, Yue H, Wu YM, He RR. Effects of phytoestrogen genistein on myocardial ischemia/reperfusion injury and apoptosis in rabbits. Acta Pharmacol Sin. 2004, 25 (3), 306–312. [PubMed] [Google Scholar]
  61. Takahashi K, Ouyang X, Komatsu K, Nakamura N, Hattori M, Baba A, et al. Sodium tanshinone IIA sulfonate derived from Danshen (Salvia miltiorrhiza) attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac cells. Biochem Pharmacol. 2002, 64 (4), 745–749. [CrossRef] [PubMed] [Google Scholar]
  62. Pradipta G, Nancy D, Stuart K. Mannose-6-phosphate receptors: new twist in the tale. Nat Rev Mol Cell Biol. 2003, 4 (3), 202–212. [CrossRef] [PubMed] [Google Scholar]
  63. Chang MH, Kuo WW, Chen RJ, Lu MC, Tsai FJ, Kuo WH, et al. IGF- II/mannose 6-phosphate receptor activation induces metalloproteinase-9 matrix activity and increases plasminogen activator expression in H9c2 cardiomyoblast cells. J Mol Endocrinol. 2008, 41 (2), 65–74. [CrossRef] [PubMed] [Google Scholar]
  64. Chu CH, Tzang BS, Chen LM, Kuo CH, Cheng YC, Chen YL, et al. IGF-II/mannose-6-phosphate receptor signaling induced cell hypertrophy and atrial natriuretic peptide/BNP expression via Galphaq interaction and protein kinase C-alpha/CaMKII activation in H9c2 cardiomyoblast cells. J Endocrinol. 2008, 197 (2), 381–390. [CrossRef] [PubMed] [Google Scholar]
  65. Chen RJ, Wu HC, Chang MH, Lai CH, Tien YC, Hwang JM, et al. Leu27IGF2 plays an opposite role to IGF1 to induce H9c2 cardio-myoblast cell apoptosis via Galphaq signaling. J Mol Endocrinol. 2009, 43 (6), 221–230. [CrossRef] [PubMed] [Google Scholar]
  66. Weng YS, Kuo WW, Lin YM, Kuo CH, Tzang BS, Tsai FJ, et al. Danshen mediates through estrogen receptors to activate Akt and inhibit apoptosis effect of Leu27IGF-II-induced IGF-II receptor signaling activation in cardiomyoblasts. Food Chem Toxicol. 2013, 56, 28–39. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.