Open Access
Review
Issue
BioMedicine
Volume 7, Number 3, September 2017
Article Number 15
Number of page(s) 13
DOI https://doi.org/10.1051/bmdcn/2017070315
Published online 25 August 2017
  1. Greenberg CD, Birckbichler PJ, Rice RH. Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 1991; 5: 3071–3077. [CrossRef] [PubMed] [Google Scholar]
  2. Lorand L, Graham RM. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol. 2003; 4: 140–156. [CrossRef] [PubMed] [Google Scholar]
  3. Fesus L, Piacentini M. Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci. 2002; 27: 534–539. [CrossRef] [PubMed] [Google Scholar]
  4. Belkin AM. Extracellular TG2: emerging functions and regulation. FEBS J. 2011; 278: 4704–4716. [CrossRef] [PubMed] [Google Scholar]
  5. Pinkas DM, Strop P, Brunger AT, Khosla C. Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol. 2007; 5: e327. [CrossRef] [PubMed] [Google Scholar]
  6. Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, et al. Transglutaminase regulation of cell function. Physiol Rev. 2014; 94: 383–417. [CrossRef] [PubMed] [Google Scholar]
  7. Kanchan K, Fuxreiter M, Fesus L. Physiological, pathological, and structural implications of nonenzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci. 2015; 72: 3009–3035. [CrossRef] [PubMed] [Google Scholar]
  8. Lesort M, Attanavanich K, Zhang J, Johnson GV. Distinct nuclear localization and activity of tissue transglutaminase. J Biol Chem. 1998; 273: 11991–11994. [CrossRef] [PubMed] [Google Scholar]
  9. Milakovic T, Tucholski J, McCoy E, Johnson GV. Intracellular localization and activity state of tissue transglutaminase differentially impacts cell death. J Biol Chem. 2004; 279: 8715–8722. [CrossRef] [PubMed] [Google Scholar]
  10. Thangaraju K, Kiraly R, Demeny MA, Motyan JA, Fuxreiter M, Fesus L. Genomic variants reveal differential evolutionary constraints on human transglutaminases and point towards unrecognized significance of transglutaminase 2. PLoS One 2017 (in press). [Google Scholar]
  11. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007; 117: 524–529. [CrossRef] [PubMed] [Google Scholar]
  12. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006; 24: 99–146. [CrossRef] [PubMed] [Google Scholar]
  13. Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003; 21: 425–456. [CrossRef] [PubMed] [Google Scholar]
  14. Hasegawa M, Fujimoto M, Takehara K, Sato S. Pathogenesis of systemic sclerosis: altered B cell function is the key linking systemic autoimmunity and tissue fibrosis. J Dermatol Sci. 2005; 39: 1–7. [CrossRef] [PubMed] [Google Scholar]
  15. Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep. 2006; 8: 145–150. [CrossRef] [PubMed] [Google Scholar]
  16. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003; 112: 1776–1784. [CrossRef] [PubMed] [Google Scholar]
  17. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 2004; 114: 438–446. [CrossRef] [PubMed] [Google Scholar]
  18. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007; 117: 557–567. [CrossRef] [PubMed] [Google Scholar]
  19. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002; 3: 349–363. [CrossRef] [PubMed] [Google Scholar]
  20. Li RK, Li G, Mickle DA, Weisel RD, Merante F, Luss H, et al. Overexpression of transforming growth factor-beta1 and insulinlike growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation. 1997; 96: 874–881. [CrossRef] [PubMed] [Google Scholar]
  21. Lan HY. Diverse Roles of TGF-β/Smads in Renal Fibrosis and Inflammation. Int J Biol Sci. 2011; 7: 1056–1067. [CrossRef] [PubMed] [Google Scholar]
  22. Dooley S, ten Dijke P. TGF-β in progression of liver disease. Cell Tissue Res. 2012; 347: 245–256. [CrossRef] [PubMed] [Google Scholar]
  23. Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, et al. Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am J Physiol Heart Circ Physiol. 2002; 283: H1253–H1262. [CrossRef] [PubMed] [Google Scholar]
  24. Sanderson N, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, et al. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci U S A. 1995; 9 2: 2572–2576. [CrossRef] [Google Scholar]
  25. Troilo H, Steer R, Collins RF, Kielty CM, Baldock C. Independent multimerization of Latent TGFp Binding Protein-1 stabilized by cross-linking and enhanced by heparan sulfate. Sci Rep 2016; 6: 34347. [CrossRef] [PubMed] [Google Scholar]
  26. Verderio E, Gaudry C, Gross S, Smith C, Downes S, Griffin M. Regulation of cell surface tissue transglutaminase: effects on matrix storage of latent transforming growth factor-beta binding protein-1. J Histochem Cytochem. 1999; 47: 1417–1432. [CrossRef] [PubMed] [Google Scholar]
  27. Nunes I, Gleizes PE, Metz CN, Rifkin DB. Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol. 1997; 136: 1151–1163. [CrossRef] [PubMed] [Google Scholar]
  28. Yen JH, Lin LC, Chen MC, Sarang Z, Leong PY, Chang IC, et al. The metastatic tumor antigen 1-transglutaminase-2 pathway is involved in self-limitation of monosodium urate crystal- induced inflammation by upregulating TGF-β1. Arthritis Res Ther 2015; 17: 65. [CrossRef] [PubMed] [Google Scholar]
  29. Colligham RJ, Griffin M. Transglutaminase 2 cross-linking of matrix proteins: biological significance and medical applications. Amino Acids. 2009; 36: 659–670. [CrossRef] [PubMed] [Google Scholar]
  30. Simin DD, Niklason LE, Humphrey JD. Tissue transglutaminase, not lysyl oxidase, dominates early calcium-dependent remodeling of fibroblast-populated collagen lattices. Cells Tissues Organs. 2014; 200: 104–117. [CrossRef] [PubMed] [Google Scholar]
  31. Sarang Z, Molnár P, Németh T, Gomba S, Kardon T, Melino G, et al.. Tissue transglutaminase (TG2) acting as G protein protects hepatocytes against Fas-mediated cell death in mice. Hepatology. 2005; 42: 578–587. [CrossRef] [PubMed] [Google Scholar]
  32. Akimov SS, Belkin AM. Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood. 2001; 98: 1567–1576. [CrossRef] [Google Scholar]
  33. Janiak A, Zemskov EA, Belkin AM. Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell. 2006; 17: 1606–1619. [CrossRef] [PubMed] [Google Scholar]
  34. Verderio EA, Telci D, Okoye A, Melino G, Griffin M. A novel RGD-independent cel adhesion pathway mediated by fibronectin-bound tissue transglutaminase rescues cells from anoikis. J Biol Chem. 2003; 278: 42604–42614. [CrossRef] [PubMed] [Google Scholar]
  35. Mehta K, Fok JY, Mangala LS. Tissue transglutaminase: from biological glue to cell survival cues. Front Biosci. 2006; 11: 173–185. [CrossRef] [PubMed] [Google Scholar]
  36. Szondy Z, Sarang Z, Molnar P, Nemeth T, Piacentini M, Mastroberardino PG, et al.. Transglutaminase 2-/- mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci U S A. 2003; 100: 7812–7817. [CrossRef] [PubMed] [Google Scholar]
  37. Toth B, Garabuczi E, Sarang Z, Vereb G, Vamosi G, Aeschlimann D, et al. Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells. J Immunol. 2009; 182: 2084–2092. [CrossRef] [PubMed] [Google Scholar]
  38. Ghanta KS, Pakala SB, Reddy SD, Li DQ, Nair SS, Kumar R. MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. J Biol Chem. 2011; 286: 7132–7138. [CrossRef] [PubMed] [Google Scholar]
  39. Ritter SJ, Davies PJ. Identification of a transforming growth factor-beta1/bone morphogenetic protein 4 (TGF-beta1/BMP4) response element within the mouse tissue transglutaminase gene promoter. J Biol Chem. 1998; 273: 12798–12806. [CrossRef] [PubMed] [Google Scholar]
  40. Sandor K, Daniel B, Kiss B, Kovacs F, Szondy Z. Transcriptional control of transglutaminase 2 expression in mouse apoptotic thymocytes. Biochim Biophys Acta. 2016; 1859: 964–974. [CrossRef] [PubMed] [Google Scholar]
  41. Lin CH, Chen J, Zhang Z, Johnson GV, Cooper AJ, Feola J, et al. Endostatin and transglutaminase 2 are involved in fibrosis of the aging kidney. Kidney Int. 2016; 89: 1281–1292. [CrossRef] [PubMed] [Google Scholar]
  42. Tang J, Zhu X, Zhao J, Fung M, Li Y, Gao Z, et al. Tissue Transglutaminase-Regulated Transformed Growth Factor-p1 in the Parasite Links Schistosoma japonicum Infection with Liver Fibrosis. Mediators Inflamm. 2015; 2015: 659378. [PubMed] [Google Scholar]
  43. Shweke N, Boulos N, Jouanneau C, Vandermeersch S, Melino G, Dussaule JC, et al. Tissue transglutaminase contributes to interstitial renal fibrosis by favoring accumulation of fibrillar collagen through TGF-beta activation and cell infiltration. Am J Pathol. 2008; 173: 631–642. [CrossRef] [PubMed] [Google Scholar]
  44. Olsen KC, Sapinoro RE, Kottmann RM, Kulkarni AA, Iismaa SE, Johnson GV, et al. Transglutaminase 2 and its role in pulmonary fibrosis. Am J Respir Crit Care Med. 2011; 184: 699–707. [CrossRef] [PubMed] [Google Scholar]
  45. Johnson TS, Fisher M, Haylor JL, Hau Z, Skill NJ, Jones R, et al. Transglutaminase inhibition reduces fibrosis and preserves function in experimental chronic kidney disease. J Am Soc Nephrol. 2007; 18: 3078–3088. [CrossRef] [Google Scholar]
  46. Olsen KC, Epa AP, Kulkarni AA, Kottmann RM, McCarthy CE, Johnson GV, et al. Inhibition of transglutaminase 2, a novel target for pulmonary fibrosis, by two small electrophilic molecules. Am J Respir Cell Mol Biol. 2014; 50: 737–747. [CrossRef] [PubMed] [Google Scholar]
  47. Huang L, Xu AM, Liu W. Transglutaminase 2 in cancer. Am J Cancer Res. 2015; 5: 2756–2776. [PubMed] [Google Scholar]
  48. Eckert RL, Fisher ML, Grun D, Adhikary G, Xu W, Kerr C. Transglutaminase is a tumor cell and cancer stem cell survival factor. Mol Carcinog. 2015; 54: 947–958. [CrossRef] [PubMed] [Google Scholar]
  49. Mangala LS, Fok JY, Zorrilla-Calancha IR, Verma A, Mehta K. Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells. Oncogene. 2007; 26: 2459–2470. [CrossRef] [PubMed] [Google Scholar]
  50. Miyoshi N, Ishii H, Mimori K, Tanaka F, Hitora T, Tei M, et al. TGM2 is a novel marker for prognosis and therapeutic target in colorectal cancer. Ann Surg Oncol. 2010; 17: 967–972. [CrossRef] [PubMed] [Google Scholar]
  51. Mehta K. Biological and therapeutic significance of tissue transglutaminase in pancreatic cancer. Amino Acids. 2009; 36: 709–716. [CrossRef] [PubMed] [Google Scholar]
  52. Satpathy M, Cao L, Pincheira R, Emerson R, Bigsby R, Nakshatri H, et al. Enhanced peritoneal ovarian tumor dissemination by tissue transglutaminase. Cancer Res. 2007; 67: 7194–7202. [CrossRef] [Google Scholar]
  53. Kausar T, Sharma R, Hasan MR, Tripathi SC, Saraya A, Chattopadhyay TK, et al. Clinical significance of GPR56, transglutaminase 2, and NF-kB in esophageal squamous cell carcinoma. Cancer Invest. 2011; 29: 42–48. [CrossRef] [PubMed] [Google Scholar]
  54. Yuan L, Siegel M, Choi K, Khosla C, Miller CR, Jackson EN, et al. Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene. 2007; 26: 2563–2573. [CrossRef] [PubMed] [Google Scholar]
  55. Fok JY, Ekmekcioglu S, Mehta K. Implications of tissue transglutaminase expression in malignant melanoma. Mol Cancer Ther. 2006; 5: 1493–1503. [CrossRef] [PubMed] [Google Scholar]
  56. Erdem S, Yegen G, Telci D, Yildiz I, Tefik T, Issever H, et al. The increased transglutaminase 2 expression levels during initial tumorigenesis predict increased risk of metastasis and decreased disease-free and cancer-specific survivals in renal cell carcinoma. World J Urol. 2015; 33: 1553–1560. [CrossRef] [PubMed] [Google Scholar]
  57. Caffarel MM, Chattopadhyay A, Araujo AM, Bauer J, Scarpini CG, Coleman N. Tissue transglutaminase mediates the pro-malignant effects of oncostatin M receptor over-expression in cervical squamous cell carcinoma. J Pathol. 2013; 231: 168–179. [CrossRef] [PubMed] [Google Scholar]
  58. Yu C, Cao Q, Chen P, Yang S, Gong X, Deng M, et al. Tissue transglutaminase 2 exerts a tumor-promoting role in hepatitis B virus-related hepatocellular carcinoma. Tumour Biol 2016; Oct 25. [Epub ahead of print] [Google Scholar]
  59. Gupta R, Srinivasan R, Nijhawan R, Suri V. Tissue transglutaminase 2 as a biomarker of cervical intraepithelial neoplasia (CIN) and its relationship to p16INK4A and nuclear factor kappaB expression. Virchows Arch. 2010; 456: 45–51. [CrossRef] [PubMed] [Google Scholar]
  60. Biri B, Kiss B, Kiräly R, Schlosser G, Läng O, Köhidai L, et al. Metastasis-associated S100A4 is a specific amine donor and an activity-independent binding partner of transglutaminase-2. Biochem J. 2016; 473: 31–42. [CrossRef] [PubMed] [Google Scholar]
  61. Multhaupt HA, Leitinger B, Gullberg D, Couchman JR. Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev. 2016; 97: 28–40. [CrossRef] [PubMed] [Google Scholar]
  62. Jeong JH, Cho BC, Shim HS, Kim HR, Lim SM, Kim SK, et al. Transglutaminase 2 expression predicts progression free survival in non-small cell lung cancer patients treated with epidermal growth factor receptor tyrosine kinase inhibitor. J Korean Med Sci. 2013; 28: 1005–1014. [CrossRef] [PubMed] [Google Scholar]
  63. Hemmings BA. Akt signaling: linking membrane events to life and death decisions. Science. 1997; 275: 628–630. [CrossRef] [PubMed] [Google Scholar]
  64. Sridharan S, Jain K, Basu A. Regulation of autophagy by kinases. Cancers (Basel). 2011; 3: 2630–2654. [CrossRef] [PubMed] [Google Scholar]
  65. Boroughs LK, Antonyak MA, Cerione RA. A novel mechanism by which tissue transglutaminase activates signaling events that promote cell survival. J Biol Chem. 2014; 289: 10115–10125. [CrossRef] [PubMed] [Google Scholar]
  66. Wang Y, Ande SR, Mishra S. Phosphorylation of transglutaminase 2 (TG2) at serine-216 has a role in TG2 mediated activation of nuclear factor-kappa B and in the downregulation of PTEN. BMC Cancer. 2012; 12: 277. [CrossRef] [PubMed] [Google Scholar]
  67. Jang GY, Jeon JH, Cho SY, Shin DM, Kim CW, Jeong EM, et al. Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-kappaB activity in hypoxic tumor cells. Oncogene. 2010; 29: 356–367. [CrossRef] [PubMed] [Google Scholar]
  68. Oh K, Ko E, Kim HS, Park AK, Moon HG, Noh DY, et al. Transglutaminase 2 facilitates the distant hematogenous metastasis of breast cancer by modulating interleukin-6 in cancer cells. Breast Cancer Res. 2011; 13: R96. [CrossRef] [PubMed] [Google Scholar]
  69. Lee J, Kim YS, Choi DH, Bang MS, Han TR, Joh TH, et al. Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem. 2004; 79: 53725–53735. [CrossRef] [Google Scholar]
  70. Yakubov B, Chelladurai B, Schmitt J, Emerson R, Turchi JJ, Matei D. Extracellular tissue transglutaminase activates noncanonical NF-κB signaling and promotes metastasis in ovarian cancer. Neoplasia. 2013; 15: 609–619. [CrossRef] [PubMed] [Google Scholar]
  71. Kumar S, Mehta K. Tissue transglutaminase constitutively activates HIF-1a promoter and nuclear factor-KB via a non-canonical pathway. PLoS One. 2012; 7: e49321. [CrossRef] [PubMed] [Google Scholar]
  72. Kang JH, Lee JS, Hong D, Lee SH, Kim N, Lee WK, et al. Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy. Cell Death Dis. 2016; 7: e2163. [CrossRef] [PubMed] [Google Scholar]
  73. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119: 1420–1428. [CrossRef] [PubMed] [Google Scholar]
  74. Ayinde O, Wang Z, Griffin M. Tissue transglutaminase induces Epithelial-Mesenchymal-Transition and the acquisition of stem cell like characteristics in colorectal cancer cells. Oncotarget. 2017 Feb 16. [Epub ahead of print] [Google Scholar]
  75. Fisher ML, Adhikary G, Xu W, Kerr C, Keillor JW, Eckert RL. Type II transglutaminase stimulates epidermal cancer stem cell epithelial-mesenchymal transition. Oncotarget. 2015; 6: 20525–20539. [CrossRef] [PubMed] [Google Scholar]
  76. Kumar A, Xu J, Sung B, Kumar S, Yu D, Aggarwal BB, et al. Evidence that GTP-binding domain but not catalytic domain of transglutaminase 2 is essential for epithelial-to-mesenchymal transition in mammary epithelial cells. Breast Cancer Res. 2012; 14: R4. [CrossRef] [PubMed] [Google Scholar]
  77. Cao L, Shao M, Schilder J, Guise T, Mohammad KS, Matei D. Tissue transglutaminase links TGF-ß, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene. 2012; 31: 2521–2534. [CrossRef] [PubMed] [Google Scholar]
  78. Lin CY, Tsai PH, Kandaswami CC, Chang GD, Cheng CH, Huang CJ, et al. Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells. Mol Cancer. 2011; 10: 87. [CrossRef] [PubMed] [Google Scholar]
  79. Shao M, Cao L, Shen C, Satpathy M, Chelladurai B, Bigsby RM, et al. Epithelial-to-mesenchymal transition and ovarian tumor progression induced by tissue transglutaminase. Cancer Res. 2009; 69: 9192–9201. [CrossRef] [Google Scholar]
  80. Cho SY, Choi K, Jeon JH, Kim CW, Shin DM, Lee JB, et al. Differential alternative splicing of human transglutaminase 4 in benign prostate hyperplasia and prostate cancer. Exp Mol Med. 2010; 42: 310–318. [CrossRef] [PubMed] [Google Scholar]
  81. Kumar S, Mehta K. Tissue transglutaminase, inflammation, and cancer: how intimate is the relationship?. Amino Acids. 2013; 44: 81–88. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  82. Zonca S, Pinton G, Wang Z, Soluri MF, Tavian D, Griffin M, et al. Tissue transglutaminase (TG2) enables survival of human malignant pleural mesothelioma cells in hypoxia. Cell Death Dis. 2017; 8 (2): e2592. [CrossRef] [PubMed] [Google Scholar]
  83. Munro JM, Cotran RS. The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab Invest. 1988; 58: 249–261. [PubMed] [Google Scholar]
  84. Haroon ZA, Wannenburg T, Gupta M, Greenberg CS, Wallin R, Sane DC. Localization of tissue transglutaminase in human carotid and coronary artery atherosclerosis: implications for plaque stability and progression. Lab Invest. 2001; 81: 83–93. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  85. Park KS, Kim DS, Ko C, Lee SJ, Oh SH, Kim SY. TNF-alpha mediated NF-kappaB activation is constantly extended by transglutaminase 2. Front Biosci (Elite Ed). 2011; 3: 341–354. [PubMed] [Google Scholar]
  86. Lai TS, Greenberg CS. Histaminylation of fibrinogen by tissue transglutaminase-2 (TGM-2): potential role in modulating inflammation. Amino Acids. 2013; 45: 857–864. [CrossRef] [PubMed] [Google Scholar]
  87. Boisvert WA, Rose DM, Boullier A, Quehenberger O, Sydlaske A, Johnson KA, et al. Terkeltaub R Leukocyte transglutaminase 2 expression limits atherosclerotic lesion size. Arterioscler Thromb Vasc Biol. 2006; 26: 563–569. [CrossRef] [PubMed] [Google Scholar]
  88. Van Herck JL, Schrijvers DM, De Meyer GR, Martinet W, Van Hove CE, Bult H, et al. Transglutaminase 2 deficiency decreases plaque fibrosis and increases plaque inflammation in apolipoprotein-E-deficient mice. J Vasc Res. 2010; 47: 231–240. [CrossRef] [PubMed] [Google Scholar]
  89. Williams H, Pease RJ, Newell LM, Cordell PA, Graham RM, Kearney MT, et al. Effect of transglutaminase 2 (TG2) deficiency on atherosclerotic plaque stability in the apolipoprotein E deficient mouse. Atherosclerosis. 2010; 210: 94–99. [CrossRef] [PubMed] [Google Scholar]
  90. Beazley KE, Banyard D, Lima F, Deasey SC, Nurminsky DI, Konoplyannikov M, et al. Transglutaminase inhibitors attenuate vascular calcification in a preclinical model. Arterioscler Thromb Vasc Biol. 2013; 33: 43–51. [CrossRef] [PubMed] [Google Scholar]
  91. Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest. 2005; 115: 1210–1220. [CrossRef] [PubMed] [Google Scholar]
  92. Lorand L, Barnes N, Bruner-Lorand JA, Hawkins M, Michalska M. Inhibition of protein cross-linking in Ca2+-enriched human erythrocytes and activated platelets. Biochemistry. 1987; 26: 308–313. [CrossRef] [PubMed] [Google Scholar]
  93. Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Culleré M, Hynes RO, et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci U S A. 1998; 95: 9524–9529. [CrossRef] [PubMed] [Google Scholar]
  94. Alberio LJ, Clemetson KJ. All platelets are not equal: COAT platelets. Curr Hematol Rep. 2004; 3: 338–343. [PubMed] [Google Scholar]
  95. Walther DJ, Peter JU, Winter S, Holtje M, Paulmann N, Grohmann M, et al. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell. 2003; 115: 851–862. [CrossRef] [PubMed] [Google Scholar]
  96. Dale GL, Friese P, Batar P, Hamilton SF, Reed GL, Jackson KW, et al. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature. 2002; 415: 175–179. [CrossRef] [PubMed] [Google Scholar]
  97. Prodan CI, Vincent AS, Kirkpatrick AC, Hoover SL, Dale GL. Higher levels of coated-platelets are observed in patients with subarachnoid hemorrhage but lower levels are associated with increased mortality at 30 days. J Neurol Sci. 2013; 334: 126–129. [CrossRef] [PubMed] [Google Scholar]
  98. Engholm M, Eftekhari A, Chwatko G, Bald E, Mulvany MJ. Effect of cystamine on blood pressure and vascular characteristics in spontaneously hypertensive rats. J Vasc Res. 2011; 48: 476–484. [CrossRef] [PubMed] [Google Scholar]
  99. Rodriguez-Iturbe B, Pons H, Quiroz Y, Johnson RJ. The immunological basis of hypertension. Am J Hypertens. 2014; 27: 1327–1337. [CrossRef] [PubMed] [Google Scholar]
  100. Trott DW, Harrison DG. The immune system in hypertension. Adv Physiol Educ. 2014; 38: 20–24. [CrossRef] [PubMed] [Google Scholar]
  101. Luo R, Liu C, Elliott SE, Wang W, Parchim N, Iriyama T, et al. Transglutaminase is a Critical Link Between Inflammation and Hypertension. J Am Heart Assoc. 2016; 5: pii: e003730. [CrossRef] [Google Scholar]
  102. Liu C, Wang W, Parchim N, Irani RA, Blackwell SC, Sibai B, et al. Tissue transglutaminase contributes to the pathogenesis of preeclampsia and stabilizes placental angiotensin receptor type 1 by ubiquitination-preventing isopeptide modification. Hypertension. 2014; 63: 353–361. [CrossRef] [PubMed] [Google Scholar]
  103. Szondy Z, Mastroberardino PG, Varadi J, Farrace MG, Nagy N, Bak I, et al. Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis. Cell Death Differ. 2006; 13: 1827–1829. [CrossRef] [PubMed] [Google Scholar]
  104. Qiao SW, Sollid LM, Blumberg RS. Antigen presentation in celiac disease. Curr Opin Immunol. 2009; 21: 111–117. [CrossRef] [PubMed] [Google Scholar]
  105. Sollid LM, Jabri B. Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of autoimmune disorders. Curr Opin Immunol. 2011; 23: 732–738. [CrossRef] [PubMed] [Google Scholar]
  106. Jabri B, Chen X, Sollid LM. How T cells taste gluten in celiac disease. Nat Struct Mol Biol. 2014; 21: 429–431. [CrossRef] [PubMed] [Google Scholar]
  107. Korponay-Szabô IR, Troncone R, Discepolo V. Adaptive diagnosis of coeliac disease. Best Pract Res Clin Gastroenterol. 2015; 29: 381–398. [CrossRef] [PubMed] [Google Scholar]
  108. Hovhannisyan Z, Weiss A, Martin A, Wiesner M, Tollefsen S, Yoshida K, et al. The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature. 2008; 456: 534–538. [CrossRef] [PubMed] [Google Scholar]
  109. Jabri B, Abadie V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol. 2015; 15: 771–783. [CrossRef] [PubMed] [Google Scholar]
  110. DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature. 2011; 471: 220–224. [CrossRef] [PubMed] [Google Scholar]
  111. Szebeni B, Veres G, Dezsofi A, Rusai K, Vannay A, Bokodi G, et al. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr. 2007; 45: 187–193. [CrossRef] [PubMed] [Google Scholar]
  112. Hausch F, Shan L, Santiago NA, Gray GM, Khosla C. Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol. 2002; 283: G996–G1003. [CrossRef] [PubMed] [Google Scholar]
  113. Garcia-Horsman JA, Venâlâinen JI, Lohi O, Auriola IS, Korponay-Szabo IR, Kaukinen K, et al. Deficient activity of mammalian prolyl oligopeptidase on the immunoactive peptide digestion in coeliac disease. Scand J Gastroenterol. 2007; 42: 562–571. [CrossRef] [PubMed] [Google Scholar]
  114. Shan L, Molberg Ø, Parrot I, Hausch F, Filiz F, Gray GM, et al. Structural basis for gluten intolerance in celiac sprue. Science. 2002; 297: 2275–2279. [CrossRef] [PubMed] [Google Scholar]
  115. Sollid LM, Molberg O, McAdam S, Lundin KE. Autoantibodies in coeliac disease: tissue transglutaminase–guilt by association?. Gut. 1997; 41: 851–852. [CrossRef] [PubMed] [Google Scholar]
  116. Barbeau WE, Novascone MA, Elgert KD. (1997) Is celiac disease due to molecular mimicry between gliadin peptide-HLA class II molecule-T cell interactions and those of some unidentified superantigen? Molecular Immunology. 34; 7:535–541. [CrossRef] [PubMed] [Google Scholar]
  117. Korponay-Szabö IR, Vecsei Z, Kirâly R, Dahlbom I, Chirdo F, Nemes E, et al. Deamidated gliadin peptides form epitopes that transglutaminase antibodies recognize. J Pediatr Gastroenterol Nutr. 2008; 46: 253–261. [CrossRef] [PubMed] [Google Scholar]
  118. Leffler DA, Schuppan D, Pallav K, Najarian R, Goldsmith JD, Hansen J, et al. Kinetics of the histologic, serologic and symptomatic responses to gluten challenge in adults with coeliac disease. Gut. 2013; 62: 996–1004. [CrossRef] [PubMed] [Google Scholar]
  119. Simon-Vecsei Z, Kirâly R, Bagossi P, Töth B, Dahlbom I, Caja S, et al. A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc Natl Acad Sci U S A. 2012; 109: 431–436. [CrossRef] [PubMed] [Google Scholar]
  120. Iversen R, Di Niro R, Stamnaes J, Lundin KE, Wilson PC, Sollid LM. Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J Immunol. 2013; 190: 5981–5991. [CrossRef] [PubMed] [Google Scholar]
  121. Salmi TT, Collin P, Korponay-Szabö IR, Laurila K, Partanen J, Huhtala H, et al. Endomysial antibody-negative coeliac disease: clinical characteristics and intestinal autoantibody deposits. Gut. 2006; 55: 1746–1753. [CrossRef] [PubMed] [Google Scholar]
  122. Nadalutti CA, Korponay-Szabo IR, Kaukinen K, Griffin M, Mäki M, Lindfors K. Celiac disease patient IgA antibodies induce endothelial adhesion and cell polarization defects via extracellular transglutaminase 2. Cell Mol Life Sci. 2014; 71: 1315–1326. [CrossRef] [PubMed] [Google Scholar]
  123. Kalliokoski S, Sulic AM, Korponay-Szabö IR, Szondy Z, Frias R, Perez MA, et al. Celiac Disease-Specific TG2-Targeted Autoantibodies Inhibit Angiogenesis Ex Vivo and In Vivo in Mice by Interfering with Endothelial Cell Dynamics. PLoS One. 2013; 8: e65887. [CrossRef] [PubMed] [Google Scholar]
  124. Kalliokoski S, Caja S, Frias R, Laurila K, Koskinen O, Niemelä O, et al. Injection of celiac disease patient sera or immunoglobulins to mice reproduces a condition mimicking early developing celiac disease. J Mol Med (Berl). 2015; 93: 51–62. [CrossRef] [PubMed] [Google Scholar]
  125. Hnida K, Stamnaes J, du Pré MF, Mysling S, Jörgensen TJ, Sollid LM, et al. Epitope-dependent Functional Effects of Celiac Disease Autoantibodies on Transglutaminase 2. J Biol Chem. 2016; 291: 25542–25552. [CrossRef] [PubMed] [Google Scholar]
  126. Davidson GP, Gall DG, Petric M, Butler DG, Hamilton JR. Human rotavirus enteritis induced in conventional piglets. Intestinal structure and transport. J Clin Invest. 1977; 60: 1402–1409. [CrossRef] [PubMed] [Google Scholar]
  127. Rubio-Tapia A, Herman ML, Ludvigsson JF, Kelly DG, Mangan TF, Wu TT, et al. Severe spruelike enteropathy associated with olmesartan. Mayo Clin Proc. 2012; 87: 732–738. [CrossRef] [PubMed] [Google Scholar]
  128. Kârpâti S, Meurer M, Stolz W, Bürgin-Wolff A, Braun-Falco O, Krieg T. Ultrastructural binding sites of endomysium antibodies from sera of patients with dermatitis herpetiformis and coeliac disease. Gut. 1992; 33: 191–193. [CrossRef] [PubMed] [Google Scholar]
  129. Korponay-Szabo IR, Halttunen T, Szalai Z, Laurila K, Kiraly R, Kovacs JB, et al. In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut. 2004; 53: 641–648. [CrossRef] [PubMed] [Google Scholar]
  130. Mogyorosy G, Felszeghy E, Kovacs T, Berkes A, Toth L, Balla G, et al. Pediatric myocarditis: A sentinel of non-cardiac chronic diseases?. Interv Med Appl Sci. 2014; 6: 154–159. [PubMed] [Google Scholar]
  131. Husby S, Koletzko S, Korponay-Szabo IR, Mearin ML, Phillips A, Shamir R, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012; 54: 136–160. [CrossRef] [PubMed] [Google Scholar]
  132. Zone JJ, Schmidt LA, Taylor TB, Hull CM, Sotiriou MC, Jaskowski TD, et al. Dermatitis herpetiformis sera or goat anti-transglutaminase-3 transferred to human skin-grafted mice mimics dermatitis herpetiformis immunopathology. J Immunol. 2011; 186: 447480. [Google Scholar]
  133. Hadjivassiliou M, Mäki M, Sanders DS, Williamson CA, Grünewald RA, Woodroofe NM, et al. Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology. 2006; 66: 373–377. [CrossRef] [PubMed] [Google Scholar]
  134. Giersiepen K, Lelgemann M, Stuhldreher N, Ronfani L, Husby S, Koletzko S, et al. ESPGHAN Working Group on Coeliac Disease Diagnosis. Accuracy of diagnostic antibody tests for coeliac disease in children: summary of an evidence report. J Pediatr Gastroenterol Nutr. 2012; 54: 229–241. [CrossRef] [PubMed] [Google Scholar]
  135. Korponay-Szabo IR, Szabados K, Pusztai J, Uhrin K, Ludmany E, Nemes E, et al. Population screening for coeliac disease in primary care by district nurses using a rapid antibody ttest: diagnostic accuracy and feasibility study. BMJ. 2007; 335: 1244–1247. [CrossRef] [PubMed] [Google Scholar]
  136. Korponay-Szabo IR, Laurila K, Szondy Z, Halttunen T, Szalai Z, Dahlbom I, et al. Missing endomysial and reticulin binding of coeliac antibodies in transglutaminase 2 knockout tissues. Gut. 2003; 52: 199–204. [CrossRef] [PubMed] [Google Scholar]
  137. Dahlbom I, Korponay-Szabö IR, Kovacs JB, Szalai Z, Mäki M, Hansson T. Prediction of clinical and mucosal severity of coeliac disease and dermatitis herpetiformis by quantification of IgA/IgG serum antibodies to tissue transglutaminase. J Pediatr Gastroenterol Nutr. 2010; 50: 140–146. [CrossRef] [PubMed] [Google Scholar]
  138. Lindfors K, Lähdeaho ML, Kalliokoski S, Kurppa K, Collin P, Mäki M, et al. Future treatment strategies for celiac disease. Expert Opin Ther Targets. 2012; 16: 665–675. [CrossRef] [PubMed] [Google Scholar]
  139. Comerford R, Kelly J, Feighery C, Byrne G. IgG anti-tTG responses in different autoimmune conditions differ in their epitope targets and subclass usage. Mol Immunol. 2015; 67: 369–376. [CrossRef] [PubMed] [Google Scholar]
  140. Jeong EM, Son YH, Choi Y, Kim JH, Lee JH, Cho SY, et al. Transglutaminase 2 is dispensable but required for the survival of mice in dextran sulfate sodium-induced colitis. Exp Mol Med. 2016; 48: e267. [CrossRef] [PubMed] [Google Scholar]
  141. Nyabam S, Wang Z, Thibault T, Oluseyi A, Basar R, Marshall L, et al. A novel regulatory role for tissue transglutaminase in epithelialmesenchymal transition in cystic fibrosis. Biochim Biophys Acta. 2016; 1863: 2234–2244. [CrossRef] [PubMed] [Google Scholar]
  142. Fesüs L, Szondy Z. Transglutaminase 2 in the balance of cell death and survival. FEBS Lett. 2005; 579: 3297–3302. [CrossRef] [PubMed] [Google Scholar]
  143. Piredda L, Amendola A, Colizzi V, Davies PJ, Farrace MG, Fraziano M, et al. Lack of ‘tissue’ transglutaminase protein cross-linking leads to leakage of macromolecules from dying cells: relationship to development of autoimmunity in MRLIpr/Ipr mice. Cell Death Differ. 1997; 4: 463–472. [CrossRef] [PubMed] [Google Scholar]
  144. Nishiura H, Shibuya Y, Yamamoto T.. S19 ribosomal protein crosslinked dimer causes monocyte-predominant infiltration by means Exp Mol Med.to complement C5a. Lab Invest 1998; 78: 1615–1623. [PubMed] [Google Scholar]
  145. Sarang Z, Madi A, Koy C, Varga S, Glocker MO, Ucker DS, et al. Tissue transglutaminase (TG2) facilitates phosphatidylserine exposure and calpain activity in calcium-induced death of erythrocytes. Cell Death Differ. 2007; 14: 1842–1844. [CrossRef] [PubMed] [Google Scholar]
  146. Nunes I, Shapiro RL, Rifkin DB. Characterization of latent TGF-beta activation by murine peritoneal macrophages. J Immunol. 1995; 155: 1450–1459. [PubMed] [Google Scholar]
  147. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/ paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998; 101: 890–898. [CrossRef] [PubMed] [Google Scholar]
  148. Rose DM, Sydlaske AD, Agha-Babakhani A, Johnson K, Terkeltaub R. Transglutaminase 2 limits murine peritoneal acute goutlike inflammation by regulating macrophage clearance of apoptotic neutrophils. Arthritis Rheum. 2006; 54: 3363–3371. [CrossRef] [PubMed] [Google Scholar]
  149. Yen JH, Lin LC, Chen MC, Sarang Z, Leong PY, Chang IC, et al. The metastatic tumor antigen 1-transglutaminase-2 pathway is involved in self-limitation of monosodium urate crystal-induced inflammation by upregulating TGF-beta1. Arthritis Res Ther. 2015; 17: 65. [CrossRef] [PubMed] [Google Scholar]
  150. Yamanegi K, Kawakami T, Yamada N, Kumanishi S, Futani H, Nakasho K, et al. The roles of a ribosomal protein S19 polymer in a mouse model of carrageenan-induced acute pleurisy. Immunobiology. 2017 ; 222 : 738–750. [CrossRef] [PubMed] [Google Scholar]
  151. Falasca L, Farrace MG, Rinaldi A, Tuosto L, Melino G, Piacentini M. Transglutaminase type II is involved in the pathogenesis of endotoxic shock. J Immunol. 2008; 180: 2616–2624. [CrossRef] [PubMed] [Google Scholar]
  152. Bijli KM, Kanter BG, Minhajuddin M, Leonard A, Xu L, Fazal F, et al. Regulation of endothelial cell inflammation and lung polymorphonuclear lymphocyte infiltration by transglutaminase 2. Shock. 2014; 42: 562–569. [CrossRef] [PubMed] [Google Scholar]
  153. Sohn J, Chae JB, Lee SY, Kim SY, Kim JG. A novel therapeutic target in inflammatory uveitis: transglutaminase 2 inhibitor. Korean J Ophthalmol. 2010; 24: 29–34. [CrossRef] [PubMed] [Google Scholar]
  154. Salica JP, Guerrieri D, Maffia P, Croxatto JO, Chuluyan HE, Gallo JE. Transglutaminase binding fusion protein linked to SLPI reduced corneal inflammation and neovascularization. BMC Ophthalmol. 2015; 15: 12. [CrossRef] [PubMed] [Google Scholar]
  155. Csomos K, Nemet I, Fesus L, Balajthy Z. Tissue transglutaminase contributes to the all-trans-retinoic acid-induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia. Blood. 2010; 116: 3933–3943. [CrossRef] [Google Scholar]
  156. Su CC, Su TR, Lai JC, Tsay GJ, Lin HK. Elevated transglutami nase-2 expression in the epidermis of psoriatic skin and its role in the skin lesion development. J Dermatol 2017 [ahead of print]. [Google Scholar]
  157. Hong GU, Ro JY, Bae Y, Kwon IH, Park GH, Choi YH, et al. Association of TG2 from mast cells and chronic spontaneous urticaria pathogenesis. Ann Allergy Asthma Immunol. 2016; 117: 290–297. [CrossRef] [PubMed] [Google Scholar]
  158. van Strien ME, de Vries HE, Chrobok NL, Bol JG, Breve JJ, van der Pol SM, et al. Tissue Transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration. Brain Behav Immun. 2015; 50: 141–154. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  159. Dzhambazov B, Lindh I, Engstrôm A, Holmdahl R. Tissue transglutaminase enhances collagen type II-induced arthritis and modifies the immunodominant T-cell epitope CII260–270. Eur J Immunol. 2009; 39: 2412–2423. [CrossRef] [PubMed] [Google Scholar]
  160. Lauzier A, Charbonneau M, Paquette M, Harper K, Dubois CM. Transglutaminase 2 cross-linking activity is linked to invadopodia formation and cartilage breakdown in arthritis. Arthritis Res Ther. 2012; 14: R159. [CrossRef] [PubMed] [Google Scholar]
  161. Tarantino U, Ferlosio A, Arcuri G, Spagnoli LG, Orlandi A. Transglutaminase 2 as a biomarker of osteoarthritis: an update. Amino Acids. 2013; 44: 199–207. [CrossRef] [PubMed] [Google Scholar]
  162. Gendek EG, Kedziora J, Gendek-Kubiak H. Can tissue transglutaminase be a marker of idiopathic inflammatory myopathies?. Immunol Lett. 2005; 97: 245–249. [CrossRef] [PubMed] [Google Scholar]
  163. André W, Nondier I, Valensi M, Guillonneau F, Federici C, Hoffner Djian P. Identification of brain substrates of transglutaminase by functional proteomics supports its role in neurodegenerative diseases. Neurobiol Dis. 2017; 101: 40–58. [CrossRef] [PubMed] [Google Scholar]
  164. Yamada T, Yoshiyama Y, Kawaguchi N, Ichinose A, Iwaki T, Hirose S, et al. Possible roles of transglutaminases in Alzheimer’s disease. Dement Geriatr Cogn Disord. 9: 103–110. [CrossRef] [PubMed] [Google Scholar]
  165. Kim SY, Grant P, Lee JH, Pant HC, Steinert PM. Differential expression of multiple transglutaminases in human brain increased expression and cross-linking by transglutaminases 1 and 2 in Alzheimer’s disease. J Biol Chem. 274: 30715–30721. [CrossRef] [PubMed] [Google Scholar]
  166. Citron BA, SantaCruz KS, Davies PJA, Festoff BW. Intron-exon swapping of transglutaminase mRNA and neuronal Tau aggregation in Alzheimer’s disease. J Biol Chem. 276: 3295–3301. [CrossRef] [PubMed] [Google Scholar]
  167. Verhaar R, Drukarch B, Bol JG, Jongenelen CA, Musters RJ, Wilhelmus MM. Increase in endoplasmic reticulum-associated tissue transglutaminase and enzymatic activation in a cellular model of Parkinson’s disease. Neurobiol Dis. 2012; 45: 839–850. [CrossRef] [PubMed] [Google Scholar]
  168. Mastroberardino PG, Piacentini M. Type 2 transglutaminase in Huntington’s disease: a double-edged sword with clinical potential. J Intern Med. 2010; 268: 419–431. [CrossRef] [PubMed] [Google Scholar]
  169. Muma NA. Transglutaminase is linked to neurodegenerative diseases. J Neuropathol Exp Neurol. 2007; 66: 258–263. [CrossRef] [PubMed] [Google Scholar]
  170. Wilhelmus MMM, Dam A-M, Drukarch B. Tissue transglutaminase: a novel pharmacological target in preventing toxic protein aggregation in neurodegenerative diseases. Eur J Pharmacol. 585: 464–472. [CrossRef] [PubMed] [Google Scholar]
  171. Siegel M, Khosla C. Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther. 2007; 115: 232–245. [CrossRef] [PubMed] [Google Scholar]
  172. Keillor WJ. Inhibition of transglutaminase. In: Hitomi K, Kojima S, Fesus L, editor. Transglutaminases, 1st ed. Springer Japan. 2016, 347–372. [Google Scholar]
  173. Keillor JW, Apperley KY, Akbar A. Inhibitors of tissue transglutaminase. Trends Pharmacol Sci. 2015; 36: 32–40. [CrossRef] [PubMed] [Google Scholar]
  174. Keillor JW, Apperley KY. Transglutaminase inhibitors: a patent review. Expert Opin Ther Pat. 2016;26(1):49–63. [CrossRef] [Google Scholar]
  175. Lai TS, Liu Y, Tucker T, Daniel KR, Sane DC, Toone E, et al. Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem Biol. 2008; 15(9) 969–978. [CrossRef] [PubMed] [Google Scholar]
  176. Ozaki S, Ebisui E, Hamada K, Goto J, Suzuki AZ, Terauchi A, et al. Potent transglutaminase inhibitors, aryl beta-aminoethyl ketones. Bioorg Med Chem Lett. 2010; 20(3): 1141–1144. [CrossRef] [PubMed] [Google Scholar]
  177. Yi MC, Palanski BA, Quintero SA, Plugis NM, Khosla C. An unprecedented dual antagonist and agonist of human Transglutaminase 2. Bioorg Med Chem Lett. 2015; 25(21):4922–4926. [CrossRef] [PubMed] [Google Scholar]
  178. Castelhano Al, Billedeau R, Pliura DH. Bonaventura BJ, Krantz A. Synthesis, chemistry, and absolute configuration of novel transglutaminase inhibitors containing a 3-halo-4, 5-dihydroisoxazole. Bioorg Chem. 1988; 16(3):335–340. [CrossRef] [Google Scholar]
  179. Choi K, Siegel M, Piper JL, Yuan L, Cho E, Strnad P, et al. Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol. 2005; 12(4):469–475. [CrossRef] [PubMed] [Google Scholar]
  180. Yuan L, Siegel M, Choi K, Khosla C, Miller CR, Jackson EN, et al. Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene. 2007; 26: 2563–2573. [CrossRef] [PubMed] [Google Scholar]
  181. Yuan L, Behdad A, Siegel M, Khosla C, Higashikubo R, Rich KM. Tissue transgluaminase 2 expression in meningiomas. J Neurooncol. 2008; 90: 125–132. [CrossRef] [PubMed] [Google Scholar]
  182. Frese-Schaper M, Schardt JA, Sakai T, Carboni GL, Schmid RA, Frese S. Inhibition of tissue transglutaminase sensitizes TRAIL-resistant lung cancer cells through upregulation of death receptor 5. FEBS Lett. 2010; 584: 2867–2871. [CrossRef] [PubMed] [Google Scholar]
  183. Cao L, Petrusca DN, Satpathy M, Nakshatri H, Petrache I, Matei D. Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis. 2008; 29: 1893–1900. [CrossRef] [PubMed] [Google Scholar]
  184. Beazley KE, Banyard D, Lima F, Deasey SC, Nurminsky DI, Konoplyannikov M, et al. Transglutaminase inhibitors attenuate vascular calcification in a preclinical model. Arterioscler Thromb Vasc Biol. 2013; 33: 43–51. [CrossRef] [PubMed] [Google Scholar]
  185. van Strien ME, de Vries HE, Chrobok NL, Bol JG, Breve JJ, van der Pol SM, et al. Tissue Transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration. Brain Behav Immun. 2015; 50: 141–154. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  186. Watts RE, Siegel M, Khosla C. Structure-activity relationship analysis of the selective inhibition of transglutaminase 2 by dihydroisoxazoles. J Med Chem. 2006; 49: 7493–7501. [CrossRef] [PubMed] [Google Scholar]
  187. Dafik L, Albertelli M, Stamnaes J, Sollid LM, Khosla C. Activation and inhibition of transglutaminase 2 in mice. PLoS One. 2012; 7 : e30642. [CrossRef] [PubMed] [Google Scholar]
  188. Klock C, Herrera Z, Albertelli M, Khosla C. Discovery of potent and specific dihydroisoxazole inhibitors of human transglutaminase 2. J Med Chem. 2014; 57: 9042–9064. [CrossRef] [PubMed] [Google Scholar]
  189. Caron NS, Munsie LN, Keillor JW, Truant R. Using FLIM-FRET to measure conformational changes of transglutaminase type 2 in live cells. PLoS One. 2012; 7: e44159. [CrossRef] [PubMed] [Google Scholar]
  190. Kerr C, Szmacinski H, Fisher ML, Nance B, Lakowicz JR JR, Akbar A, et al. Transamidase site-targeted agents alter the conformation of the transglutaminase cancer stem cell survival protein to reduce GTP binding activity and cancer stem cell survival. Oncogene 2016 Dec 12. doi: 10.1038/onc.2016.452. [Epub ahead of print]. [Google Scholar]
  191. Marrano C, de Macédo P, Keillor JW. Evaluation of novel dipeptide-bound alpha, beta-unsaturated amides and epoxides as irreversible inhibitors of guinea pig liver transglutaminase. Bioorg Med Chem. 2001; 9: 1923–1928. [CrossRef] [PubMed] [Google Scholar]
  192. de Macédo P, Marrano C, Keillor JW. Synthesis of dipeptide-bound epoxides and alpha, beta-unsaturated amides as potential irreversible transglutaminase inhibitors. Bioorg Med Chem. 2002; 10: 355–360. [CrossRef] [PubMed] [Google Scholar]
  193. Schaertl S, Prime M, Wityak J, Dominguez C, Munoz-Sanjuan I, Pacifici RE, et al. A profiling platform for the characterization of transglutaminase 2 (TG2) inhibitors. J Biomol Screen. 2010; 15: 478–487. [CrossRef] [PubMed] [Google Scholar]
  194. Prime ME, Andersen OA, Barker JJ, Brooks MA, Cheng RK, Too-good-Johnson I, et al. Discovery and structure-activity relationship of potent and selective covalent inhibitors of transglutaminase 2 for Huntington’s disease. J Med Chem. 2012; 55: 1021–1046. [CrossRef] [PubMed] [Google Scholar]
  195. McConoughey SJ, Basso M, Niatsetskaya ZV, Sleiman SF, Smirnova NA, Langley BC, et al. Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Mol Med. 2010; 2: 349–370. [CrossRef] [PubMed] [Google Scholar]
  196. Pinkas DM, Strop P, Brunger AT, Khosla C. Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol. 2007; 5: e327. [CrossRef] [PubMed] [Google Scholar]
  197. Badarau E, Mongeot A, Collighan R, Rathbone D, Griffin M. Imidazolium-based warheads strongly influence activity of water-soluble peptidic transglutaminase inhibitors. Eur J Med Chem. 2013; 66: 526–530. [CrossRef] [PubMed] [Google Scholar]
  198. Badarau E, Wang Z, Rathbone DL, Costanzi A, Thibault T, Murdoch CE, et al. Development of Potent and Selective Tissue Transglutaminase Inhibitors: Their Effect on TG2 Function and Application in Pathological Conditions. Chem Biol. 2015; 22: 1347–1361. [CrossRef] [PubMed] [Google Scholar]
  199. Wang Z, Collighan RJ, Pytel K, Rathbone DL, Li X, Griffin M. Characterization of heparin-binding site of tissue transglutaminase: its importance in cell surface targeting, matrix deposition, and cell signaling. J Biol Chem. 2012; 287: 13063–13083. [CrossRef] [PubMed] [Google Scholar]
  200. Hnida K, Stamnaes J, du Pré MF, Mysling S, Jørgensen TJ, Sollid LM, et al. Epitope-dependent Functional Effects of Celiac Disease Autoantibodies on Transglutaminase 2. J Biol Chem. 2016; 291: 25542–25552. [CrossRef] [PubMed] [Google Scholar]
  201. Huang L, Haylor JL, Hau Z, Jones RA, Vickers ME, Wagner B, et al. Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int. 2009; 76: 383–394. [CrossRef] [PubMed] [Google Scholar]
  202. Gatta NG, Cammarota G, Iannaccone M, Serretiello E, Gentile V. Curcumin (Diferulolylmethane) Reduces Transglutaminase 2 Overexpression Induced by Retinoic Acid in Human Nervous Cell Lines. Neuroimmunomodulation. 2016; 23: 188–193. [CrossRef] [PubMed] [Google Scholar]
  203. Ashour AA, Gurbuz N, Alpay SN, Abdel-Aziz AA, Mansour AM, Huo L, et al. Elongation factor-2 kinase regulates TG2/p1 integrin/ Src/uPAR pathway and epithelial-mesenchymal transition mediating pancreatic cancer cells invasion. J Cell Mol Med. 2014; 18: 2235–2251. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.