Open Access
Issue
BioMedicine
Volume 7, Number 3, September 2017
Article Number 19
Number of page(s) 5
DOI https://doi.org/10.1051/bmdcn/2017070319
Published online 25 August 2017
  1. Amoah SK, Sandjo LP, Kratz JM, Biavatti MW. Rosmarinic Acid-Pharmaceutical and Clinical Aspects. Planta Med. 2016; 82: 388–406. [CrossRef] [PubMed]
  2. González-Vallinas M, Reglero G. Ramírez de Molina A. Rosemary (Rosmarinus officinalis L.) extract as a potential complementary agent in anticancer therapy. Nutr Cancer. 2015; 67: 1221–1229. [CrossRef]
  3. Nabavi SF, Tenore GC, Daglia M, Tundis R, Loizzo MR, Nabavi SM. The cellular protective effects of rosmarinic acid: from bench to bedside. Curr Neurovasc Res. 2015; 12: 98–105. [CrossRef] [PubMed]
  4. Shan Y, Wang DD, Xu YX, Wang C, Cao L, Liu YS, Zhu CQ. Aging as a precipitating factor in chronic restraint stress-induced Tau aggregation pathology, and the protective effects of rosmarinic acid. J Alzheimers Dis. 2016; 49: 829–844. [CrossRef] [PubMed]
  5. Ferreira LG, Celotto AC, Capellini VK, Albuquerque AA, Nadai TR, Carvalho MT, Evora PR.. Is rosmarinic acid underestimated as an experimental cardiovascular drug? Acta Cir Bras. 2013; 28 Suppl 1: 83–87. [CrossRef] [PubMed]
  6. Runtuwene J, Cheng KC, Asakawa A, Amitani H, Amitani M, Morinaga A, et al. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4. Drug Des Devel Ther. 2016; 10: 2193–2202. [CrossRef] [PubMed]
  7. Mushtaq N, Schmatz R, Ahmed M, Pereira LB, da Costa P, Reichert KP, et al. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats. J Physiol Biochem. 2015; 71: 743–751. [CrossRef] [PubMed]
  8. Sotnikova R, Okruhlicova L, Vlkovicova J, Navarova J, Gajdacova B, Pivackova L, et al. Rosmarinic acid administration attenuates diabetes-induced vascular dysfunction of the rat aorta. J Pharm Pharmacol. 2013; 65: 713–723. [CrossRef] [PubMed]
  9. Luan H, Kan Z, Xu Y, Lv C, Jiang W. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: relation to inflammation response. J Neuroinflammation. 2013; 10: 28. [CrossRef] [PubMed]
  10. Leung SS, Forbes JM, Borg DJ. Receptor for advanced glycation end products (RAGE) in type 1 diabetes pathogenesis. Curr Diab Rep. 2016; 16: 100. [CrossRef] [PubMed]
  11. Takeda S, Sato N, Rakugi H, Morishita R. Molecular mechanisms linking diabetes mellitus and Alzheimer disease: beta-amyloid peptide, insulin signaling, and neuronal function. Mol Biosyst. 2011; 7: 1822–1827. [CrossRef]
  12. Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009; 52: 2251–2263. [CrossRef]
  13. Govindaraj J, Sorimuthu Pillai S. Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: streptozotocin-induced diabetic rats. Mol Cell Biochem. 2015; 404: 143–159. [CrossRef]
  14. Gordillo-Moscoso A, Ruiz E, Carnero M, Reguillo F, Tejerina E, et al. Relationship between serum levels of triglycerides and vascular inflammation, measured as COX-2, in arteries from diabetic patients: a translational study. Lipids Health Dis. 2013; 12: 62. [CrossRef] [PubMed]
  15. Mohamed R, Jayakumar C, Ranganathan PV, Ganapathy V, Ramesh G. Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice. Am J Pathol. 2012; 181: 1991–2002. [CrossRef]
  16. Basta G, Navarra T, De Simone P, Del Turco S, Gastaldelli A, Filipponi F. What is the role of the receptor for advanced glycation end products-ligand axis in liver injury?. Liver Transpl. 2011; 17: 633–640. [CrossRef] [PubMed]
  17. Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE–opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets. 2016; 20: 431–446. [CrossRef] [PubMed]
  18. Grewal AS, Bhardwaj S, Pandita D, Lather V, Sekhon BS. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev Med Chem. 2016; 16: 120–162. [CrossRef]
  19. Obrosova IG, Kador PF. Aldose reductase / polyol inhibitors for diabetic retinopathy. Curr Pharm Biotechnol. 2011; 12: 373–385. [CrossRef]
  20. Setter SM, Campbell RK, Cahoon CJ. Biochemical pathways for microvascular complications of diabetes mellitus. Ann Pharmacother. 2003; 37: 1858–1866. [CrossRef] [PubMed]
  21. Maessen DE, Stehouwer CD, Schalkwijk CG. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci (Lond). 2015; 128: 839–861. [CrossRef] [PubMed]
  22. Rabbani N, Xue M, Thornalley PJ. Activity, regulation, copy number and function in the glyoxalase system. Biochem Soc Trans. 2014; 42: 419–424. [CrossRef]
  23. Hirakawa Y, Inagi R. Glycative stress and its defense machinery glyoxalase 1 in renal pathogenesis. Int J Mol Sci. 2017; 18(1). [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.