Open Access
Volume 7, Number 3, September 2017
Article Number 19
Number of page(s) 5
Published online 25 August 2017
  1. Amoah SK, Sandjo LP, Kratz JM, Biavatti MW. Rosmarinic Acid-Pharmaceutical and Clinical Aspects. Planta Med. 2016; 82: 388–406. [CrossRef] [PubMed] [Google Scholar]
  2. González-Vallinas M, Reglero G. Ramírez de Molina A. Rosemary (Rosmarinus officinalis L.) extract as a potential complementary agent in anticancer therapy. Nutr Cancer. 2015; 67: 1221–1229. [CrossRef] [PubMed] [Google Scholar]
  3. Nabavi SF, Tenore GC, Daglia M, Tundis R, Loizzo MR, Nabavi SM. The cellular protective effects of rosmarinic acid: from bench to bedside. Curr Neurovasc Res. 2015; 12: 98–105. [CrossRef] [PubMed] [Google Scholar]
  4. Shan Y, Wang DD, Xu YX, Wang C, Cao L, Liu YS, Zhu CQ. Aging as a precipitating factor in chronic restraint stress-induced Tau aggregation pathology, and the protective effects of rosmarinic acid. J Alzheimers Dis. 2016; 49: 829–844. [CrossRef] [PubMed] [Google Scholar]
  5. Ferreira LG, Celotto AC, Capellini VK, Albuquerque AA, Nadai TR, Carvalho MT, Evora PR.. Is rosmarinic acid underestimated as an experimental cardiovascular drug? Acta Cir Bras. 2013; 28 Suppl 1: 83–87. [CrossRef] [PubMed] [Google Scholar]
  6. Runtuwene J, Cheng KC, Asakawa A, Amitani H, Amitani M, Morinaga A, et al. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4. Drug Des Devel Ther. 2016; 10: 2193–2202. [CrossRef] [PubMed] [Google Scholar]
  7. Mushtaq N, Schmatz R, Ahmed M, Pereira LB, da Costa P, Reichert KP, et al. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats. J Physiol Biochem. 2015; 71: 743–751. [CrossRef] [PubMed] [Google Scholar]
  8. Sotnikova R, Okruhlicova L, Vlkovicova J, Navarova J, Gajdacova B, Pivackova L, et al. Rosmarinic acid administration attenuates diabetes-induced vascular dysfunction of the rat aorta. J Pharm Pharmacol. 2013; 65: 713–723. [CrossRef] [PubMed] [Google Scholar]
  9. Luan H, Kan Z, Xu Y, Lv C, Jiang W. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: relation to inflammation response. J Neuroinflammation. 2013; 10: 28. [CrossRef] [PubMed] [Google Scholar]
  10. Leung SS, Forbes JM, Borg DJ. Receptor for advanced glycation end products (RAGE) in type 1 diabetes pathogenesis. Curr Diab Rep. 2016; 16: 100. [CrossRef] [PubMed] [Google Scholar]
  11. Takeda S, Sato N, Rakugi H, Morishita R. Molecular mechanisms linking diabetes mellitus and Alzheimer disease: beta-amyloid peptide, insulin signaling, and neuronal function. Mol Biosyst. 2011; 7: 1822–1827. [CrossRef] [Google Scholar]
  12. Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia. 2009; 52: 2251–2263. [CrossRef] [PubMed] [Google Scholar]
  13. Govindaraj J, Sorimuthu Pillai S. Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: streptozotocin-induced diabetic rats. Mol Cell Biochem. 2015; 404: 143–159. [CrossRef] [PubMed] [Google Scholar]
  14. Gordillo-Moscoso A, Ruiz E, Carnero M, Reguillo F, Tejerina E, et al. Relationship between serum levels of triglycerides and vascular inflammation, measured as COX-2, in arteries from diabetic patients: a translational study. Lipids Health Dis. 2013; 12: 62. [CrossRef] [PubMed] [Google Scholar]
  15. Mohamed R, Jayakumar C, Ranganathan PV, Ganapathy V, Ramesh G. Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice. Am J Pathol. 2012; 181: 1991–2002. [CrossRef] [PubMed] [Google Scholar]
  16. Basta G, Navarra T, De Simone P, Del Turco S, Gastaldelli A, Filipponi F. What is the role of the receptor for advanced glycation end products-ligand axis in liver injury?. Liver Transpl. 2011; 17: 633–640. [CrossRef] [PubMed] [Google Scholar]
  17. Ramasamy R, Shekhtman A, Schmidt AM. The multiple faces of RAGE–opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets. 2016; 20: 431–446. [CrossRef] [PubMed] [Google Scholar]
  18. Grewal AS, Bhardwaj S, Pandita D, Lather V, Sekhon BS. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev Med Chem. 2016; 16: 120–162. [CrossRef] [PubMed] [Google Scholar]
  19. Obrosova IG, Kador PF. Aldose reductase / polyol inhibitors for diabetic retinopathy. Curr Pharm Biotechnol. 2011; 12: 373–385. [CrossRef] [PubMed] [Google Scholar]
  20. Setter SM, Campbell RK, Cahoon CJ. Biochemical pathways for microvascular complications of diabetes mellitus. Ann Pharmacother. 2003; 37: 1858–1866. [CrossRef] [PubMed] [Google Scholar]
  21. Maessen DE, Stehouwer CD, Schalkwijk CG. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci (Lond). 2015; 128: 839–861. [CrossRef] [PubMed] [Google Scholar]
  22. Rabbani N, Xue M, Thornalley PJ. Activity, regulation, copy number and function in the glyoxalase system. Biochem Soc Trans. 2014; 42: 419–424. [CrossRef] [PubMed] [Google Scholar]
  23. Hirakawa Y, Inagi R. Glycative stress and its defense machinery glyoxalase 1 in renal pathogenesis. Int J Mol Sci. 2017; 18(1). [CrossRef] [Google Scholar]