Open Access
Volume 7, Number 4, December 2017
Article Number 23
Number of page(s) 12
Published online 13 November 2017
  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108. [CrossRef] [PubMed] [Google Scholar]
  2. Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer. 1999; 83: 18-29. [CrossRef] [PubMed] [Google Scholar]
  3. Liaw YP, Huang YC, Lien GW. Patterns of lung cancer mortality in 23 countries: application of the age-period-cohort model. BMC Public Health. 2005; 5: 22. [CrossRef] [Google Scholar]
  4. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007; 57: 43-66. [CrossRef] [PubMed] [Google Scholar]
  5. Spira A,Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med. 2004; 350: 379-92. [CrossRef] [PubMed] [Google Scholar]
  6. Herbst RS, Bunn PA, Jr. Targeting the epidermal growth factor receptor in non-small cell lung cancer. Clin Cancer Res. 2003; 9: 5813-24. [PubMed] [Google Scholar]
  7. Broker LE, Glaccone G. The role of new agents in the treatment of non-small cell lung cancer. Eur J Cancer. 2002; 38: 2347-61. [CrossRef] [PubMed] [Google Scholar]
  8. Chen CJ, You SL, Lin LH, Hsu WL, Yang YW. Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol. 2002;32 Suppl: S66-81. [Google Scholar]
  9. Chen CJ, Liang KY, Chang AS, Chang YC, Lu SN, Liaw YF, et al. Effects of hepatitis B virus, alcohol drinking, cigarette smoking and familial tendency on hepatocellular carcinoma. Hepatology. 1991; 13: 398-406. [CrossRef] [PubMed] [Google Scholar]
  10. Lin TM, Yang CS, Tu SM, Chen CJ, Kuo KC, Hirayama T. Interaction of factors associated with cancer of the nasopharynx. Cancer. 1979; 44: 1419-23. [CrossRef] [PubMed] [Google Scholar]
  11. Hung HC, Chuang J, Chien YC, Chern HD, Chiang CP, Kuo YS, et al. Genetic polymorphisms of CYP2E1, GSTM1, and GSTT1; environmental factors and risk of oral cancer. Cancer Epidemiol Biomarkers Prev. 1997; 6: 901-5. [PubMed] [Google Scholar]
  12. Liaw KM, Chen CJ. Mortality attributable to cigarette smoking in Taiwan: a 12-year follow-up study. Tob Control. 1998;7: 141-8. [CrossRef] [PubMed] [Google Scholar]
  13. Peto R, Darby S, Deo H, Silcocks P, Whitley E, Doll R. Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ. 2000; 321: 323-9. [CrossRef] [PubMed] [Google Scholar]
  14. Wei Q, Cheng L, Amos CI, Wang LE, Guo Z, Hong WK, et al. Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study. J Natl Cancer Inst. 2000; 92: 1764-72. [CrossRef] [PubMed] [Google Scholar]
  15. Ettinger DS. Overview and state of the art in the management of lung cancer. Oncology (Williston Park) 2004; 18: 3-9. [Google Scholar]
  16. Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y. The new World Health Organization classification of lung tumours. Eur Respir J. 2001; 18: 1059-68. [CrossRef] [PubMed] [Google Scholar]
  17. Read WL, Page NC, Tierney RM, Piccirillo JF, Govindan R. The epidemiology of bronchioloalveolar carcinoma over the past two decades: analysis of the SEER database. Lung Cancer. 2004; 45: 137-42. [CrossRef] [PubMed] [Google Scholar]
  18. Beasley MB, Brambilla E, Travis WD. The 2004 World Health Organization classification of lung tumors. Semin Roentgenol. 2005; 40: 90-7. [CrossRef] [PubMed] [Google Scholar]
  19. Shinoura N, Yamada R, Okamoto K, Nakamura O, Shitara N. Local recurrence of metastatic brain tumor after stereotactic radiosur-gery or surgery plus radiation. J Neurooncol. 2002; 60: 71-7. [CrossRef] [PubMed] [Google Scholar]
  20. Lavine SD, Petrovich Z, Cohen-Gadol AA, Masri LS, Morton DL, O'Day SJ, et al. Gamma knife radiosurgery for metastatic melanoma: an analysis of survival, outcome, and complications. Neurosurgery. 1999; 44: 59-64; discussion 64-6. [CrossRef] [PubMed] [Google Scholar]
  21. Winton T, Livingston R, Johnson D, Rigas J, Johnston M, Butts C, et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N Engl J Med. 2005; 352: 2589-97. [CrossRef] [PubMed] [Google Scholar]
  22. Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med. 2004; 350: 351-60. [CrossRef] [PubMed] [Google Scholar]
  23. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002; 346: 92-8. [CrossRef] [PubMed] [Google Scholar]
  24. Hanna N, Shepherd FA, Fossella FV, Pereira JR, De Marinis F, von Pawel J, et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol. 2004; 22: 1589-97. [CrossRef] [PubMed] [Google Scholar]
  25. Mahalingam D, Mita A, Mita MM, Nawrocki ST, Giles FJ. Targeted therapy for advanced non-small cell lung cancers: historical perspective, current practices, and future development. Curr Probl Cancer. 2009; 33: 73-111. [CrossRef] [PubMed] [Google Scholar]
  26. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, et al. p53 status and the efficacy of cancer therapy in vivo. Science 1994; 266: 807-10. [CrossRef] [PubMed] [Google Scholar]
  27. Hotta K, Matsuo K, Ueoka H, Kiura K, Tabata M, Tanimoto M. Meta-analysis of randomized clinical trials comparing Cisplatin to Carboplatin in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2004; 22: 3852-9. [CrossRef] [PubMed] [Google Scholar]
  28. Ardizzoni A, Boni L, Tiseo M, Fossella FV, Schiller JH, Paesmans M, et al. Cisplatin-versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: an individual patient data meta-analysis. J Natl Cancer Inst. 2007; 99: 847-57. [CrossRef] [PubMed] [Google Scholar]
  29. Le Chevalier T, Scagliotti G, Natale R, Danson S, Rosell R, Stahel R, et al. Efficacy of gemcitabine plus platinum chemotherapy compared with other platinum containing regimens in advanced non-small-cell lung cancer: a meta-analysis of survival outcomes. Lung Cancer. 2005; 47: 69-80. [CrossRef] [PubMed] [Google Scholar]
  30. Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist. 2007; 12: 713-8. [CrossRef] [PubMed] [Google Scholar]
  31. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006; 355: 2542-50. [CrossRef] [PubMed] [Google Scholar]
  32. Muller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, et al. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (ApO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest. 1997; 99: 403-13. [CrossRef] [PubMed] [Google Scholar]
  33. Fulda S, Friesen C, Debatin KM. Molecular determinants of apoptosis induced by cytotoxic drugs. Klinische Padiatrie. 1998; 210: 148-52. [CrossRef] [PubMed] [Google Scholar]
  34. Cho JY, Kim JH, Lee YH, Chung KY, Kim SK, Gong SJ, et al. Correlation between K-ras gene mutation and prognosis of patients with nonsmall cell lung carcinoma. Cancer. 1997; 79: 462-67. [CrossRef] [PubMed] [Google Scholar]
  35. Britten RA, Liu D, Tessier A, Hutchison MJ, Murray D. ERCC1 expression as a molecular marker of cisplatin resistance in human cervical tumor cells. Int J Cancer. 2000; 89: 453-57. [CrossRef] [PubMed] [Google Scholar]
  36. Cohen SM, Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol. 2001; 67: 93-130. [CrossRef] [PubMed] [Google Scholar]
  37. Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res. 2001; 478: 23-43. [CrossRef] [PubMed] [Google Scholar]
  38. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 2007; 33: 9-23. [CrossRef] [PubMed] [Google Scholar]
  39. Perez RP. Cellular and molecular determinants of cisplatin resistance. Eur J Cancer. 1998; 34: 1535-42. [CrossRef] [PubMed] [Google Scholar]
  40. Niedner H, Christen R, Lin X, Kondo A, Howell SB. Identification of genes that mediate sensitivity to cisplatin. Molecular Pharmacology. 2001; 60: 1153-60. [CrossRef] [PubMed] [Google Scholar]
  41. Mansouri A, Ridgway LD, Korapati AL, Zhang Q, Tian L, Wang Y, et al. Sustained activation of JNK/p38 MAPK pathways in response to cisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. J Biol Chem. 2003; 278: 19245-56. [CrossRef] [PubMed] [Google Scholar]
  42. Seve P, Dumontet C. Chemoresistance in non-small cell lung cancer. Curr Med Chem Anticancer Agents. 2005; 5: 73-88. [CrossRef] [PubMed] [Google Scholar]
  43. Rowinsky EK, Onetto N, Canetta RM, Arbuck SG. Taxol: the first of the taxanes, an important new class of antitumor agents. Semin Oncol. 1992; 19: 646-62. [PubMed] [Google Scholar]
  44. Eckardt JR. Antitumor activity of docetaxel. Am J Health Syst Pharm. 1997; 54: S2-6. [PubMed] [Google Scholar]
  45. Neuss N, Mallett GE, Brannon DR, Mabe JA, Horton HR, Huck-step LL. Vinca alkaloids XXXIII [1]. Microbiological conversions of vincaleukoblastine (VLB, vinblastine), an antitumor alkaloid from Vinca rosea. Linn. Helv Chim Acta. 1974; 57: 1886-90. [CrossRef] [Google Scholar]
  46. TerHaar E, Kowalski RJ, Hamel E, Lin CM, Longley RE, Gunasek-era SP, et al. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry. 1996; 35: 243-50. [CrossRef] [PubMed] [Google Scholar]
  47. Gligorov J, Lotz JP. Preclinical pharmacology of the taxanes: Implications of the differences. Oncologist. 2004; 9: 3-8. [CrossRef] [EDP Sciences] [Google Scholar]
  48. Chang AY, Kim K, Glick J, Anderson T, Karp D, Johnson D. Phase II study of taxol, merbarone, and piroxantrone in stage IV non-small-cell lung cancer: The Eastern Cooperative Oncology Group Results. J Natl Cancer Inst. 1993; 85: 388-94. [CrossRef] [PubMed] [Google Scholar]
  49. Murphy WK, Fossella FV, Winn RJ, Shin DM, Hynes HE, Gross HM, et al. Phase II study of taxol in patients with untreated advanced non-small-cell lung cancer. J Natl Cancer Inst. 1993; 85: 384-8. [CrossRef] [PubMed] [Google Scholar]
  50. Gatzemeier U, Heckmayer M, Neuhauss R, Schluter I, von Pawel J, Wagner H, et al. Chemotherapy of advanced inoperable non-small cell lung cancer with paclitaxel: a phase II trial. Semin Oncol. 1995; 22: 24-8. [Google Scholar]
  51. Millward MJ, Bishop JF, Friedlander M, Levi JA, Goldstein D, Olver IN, et al. Phase II trial of a 3-hour infusion of paclitaxel in previously untreated patients with advanced non-small-cell lung cancer. J Clin Oncol. 1996; 14: 142-8. [CrossRef] [PubMed] [Google Scholar]
  52. Haldar S, Basu A, Croce CM. Bcl2 is the guardian of microtubule integrity. Cancer Res. 1997; 57: 229-33. [Google Scholar]
  53. Hennequin C, Giocanti N, Favaudon V. S-phase specificity of cell killing by docetaxel (Taxotere) in synchronised HeLa cells. Br J Cancer. 1995; 71: 1194-8. [CrossRef] [PubMed] [Google Scholar]
  54. Pasquier E, Carre M, Pourroy B, Camoin L, Rebai O, Briand C, et al. Antiangiogenic activity of paclitaxel is associated with its cyto-static effect, mediated by the initiation but not completion of a mi-tochondrial apoptotic signaling pathway. Mol Cancer Ther. 2004; 3: 1301-10. [PubMed] [Google Scholar]
  55. Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D, Anto RJ. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/ threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem. 2005; 280: 6301-8. [CrossRef] [PubMed] [Google Scholar]
  56. Subbaramaiah K, Hart JC, Norton L, Dannenberg AJ. Microtubule-interfering agents stimulate the transcription of cyclooxygenase-2. Evidence for involvement of ERK1/2 AND p38 mitogen-activated protein kinase pathways. J Biol Chem. 2000; 275: 14838-45. [CrossRef] [PubMed] [Google Scholar]
  57. Wang TH, Wang HS, Soong YK. Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer. 2000; 88: 2619-28. [CrossRef] [PubMed] [Google Scholar]
  58. Wang LG, Liu XM, Kreis W, Budman DR. The effect of antimi-crotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol. 1999; 44: 355-61. [CrossRef] [PubMed] [Google Scholar]
  59. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998; 94: 491-501. [CrossRef] [PubMed] [Google Scholar]
  60. Ofir R, Seidman R, Rabinski T, Krup M, Yavelsky V, Weinstein Y, et al. Taxol-induced apoptosis in human SKOV3 ovarian and MCF7 breast carcinoma cells is caspase-3 and caspase-9 independent. Cell Death Differ. 2002; 9: 636-42. [CrossRef] [PubMed] [Google Scholar]
  61. Ibrado AM, Liu L, Bhalla K. Bcl-xL overexpression inhibits progression of molecular events leading to paclitaxel-induced apop-tosis of human acute myeloid leukemia HL-60 cells. Cancer Res. 1997; 57: 1109-15. [Google Scholar]
  62. Perkins C, Kim CN, Fang G, Bhalla KN. Arsenic induces apop-tosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). Blood. 2000; 95: 1014-22. [Google Scholar]
  63. Park SJ, Wu CH, Gordon JD, Zhong X, Emami A, Safa AR. Taxol induces caspase-10-dependent apoptosis. J Biol Chem. 2004; 279: 51057-67. [CrossRef] [PubMed] [Google Scholar]
  64. Lin HL, Liu TY, Chau GY, Lui WY, Chi CW. Comparison of 2-methoxyestradiol-induced, docetaxel-induced, and paclitaxel-induced apoptosis in hepatoma cells and its correlation with reactive oxygen species. Cancer. 2000; 89: 983-94. [CrossRef] [PubMed] [Google Scholar]
  65. Mason KA, Hunter NR, Milas M, Abbruzzese JL, Milas L. Do-cetaxel enhances tumor radioresponse in vivo. Clin Cancer Res. 1997; 3: 2431-8. [PubMed] [Google Scholar]
  66. Milas L, Milas MM, Mason KA. Combination of taxanes with radiation: preclinical studies. Semin Radiat Oncol. 1999; 9: 12-26. [PubMed] [Google Scholar]
  67. Mason K, Staab A, Hunter N, McBride W, Petersen S, Terry N, et al. Enhancement of tumor radioresponse by docetaxel: Involvement of immune system. Int J Oncol. 2001; 18: 599-606. [PubMed] [Google Scholar]
  68. Olijslagers SJ, Zhang YH, Backendorf C, Noteborn MH. Additive cytotoxic effect of apoptin and chemotherapeutic agents paclitaxel and etoposide on human tumour cells. Basic Clin Pharmacol Toxicol. 2007; 100: 127-31. [PubMed] [Google Scholar]
  69. Juretic A, Sobat H, Samija M. Combined modality therapy of non-small cell lung cancers. Ann Oncol. 1999; 10 Suppl 6: 93-8. [CrossRef] [PubMed] [Google Scholar]
  70. Belani CP. Paclitaxel and docetaxel combinations in non-small cell lung cancer. Chest. 2000; 117:144S-51S. [CrossRef] [PubMed] [Google Scholar]
  71. Suzuki A, Kawabata T, Kato M. Necessity of interleukin-1beta converting enzyme cascade in taxotere-initiated death signaling. Eur J Pharmacol. 1998; 343: 87-92. [CrossRef] [PubMed] [Google Scholar]
  72. Ganansia-Leymarie V, Bischoff P, Bergerat JP, Holl V. Signal transduction pathways of taxanes-induced apoptosis. Curr Med Chem Anticancer Agents. 2003; 3: 291-306. [CrossRef] [PubMed] [Google Scholar]
  73. Kottke TJ, Blajeski AL, Meng XW, Svingen PA, Ruchaud S, Mesner PW Jr., et al. Lack of correlation between caspase activation and caspase activity assays in paclitaxel-treated MCF-7 breast cancer cells. J Biol Chem. 2002; 277: 804-15. [CrossRef] [PubMed] [Google Scholar]
  74. Lee SJ, Lee HS, Choi JS, Na JO, Seo KH, Oh MH, et al. Remarkable Effect of Gefitinib Retreatment in a Lung Cancer Patient With Lepidic Predominat Adenocarcinoma who had Experienced Favorable Results From Initial Treatment With Gefitinib: A Case Report. J Clin Med Res. 2012; 4: 216-20. [PubMed] [Google Scholar]
  75. Meric JB, Faivre S, Monnerat C, Adi Vago N, Le Chevalier T, Armand JP, et al. [Zd 1839 “Iressa"]. Bull Cancer. 2000; 87: 873-6. [PubMed] [Google Scholar]
  76. Anderson NG, Ahmad T, Chan K, Dobson R, Bundred NJ. ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR-positive cancer cell lines with or without erbB2 overexpression. Int J Cancer. 2001; 94: 774-82. [CrossRef] [PubMed] [Google Scholar]
  77. Baselga J, Rischin D, Ranson M, Calvert H, Raymond E, Kieback DG, et al. Phase I safety, pharmacokinetic, and pharma-codynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol. 2002; 20: 4292-302. [CrossRef] [PubMed] [Google Scholar]
  78. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol. 2003; 21: 2237-46. [CrossRef] [PubMed] [Google Scholar]
  79. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr., Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA. 2003; 290: 2149-58. [CrossRef] [PubMed] [Google Scholar]
  80. von Minckwitz G, Jonat W, Fasching P, du Bois A, Kleeberg U, Luck HJ, et al. A multicentre phase II study on gefitinib in taxane-and anthracycline-pretreated metastatic breast cancer. Breast Cancer Res Treat. 2005; 89: 165-72. [CrossRef] [PubMed] [Google Scholar]
  81. Schiff BA, McMurphy AB, Jasser SA, Younes MN, Doan D, Yigitbasi OG, et al. Epidermal growth factor receptor (EGFR) is overexpressed in anaplastic thyroid cancer, and the EGFR inhibitor gefitinib inhibits the growth of anaplastic thyroid cancer. Clin Cancer Res. 2004; 10: 8594-602. [CrossRef] [PubMed] [Google Scholar]
  82. Shi L, Tang J, Tong L, Liu Z. Risk of interstitial lung disease with gefitinib and erlotinib in advanced non-small cell lung cancer: a systematic review and meta-analysis of clinical trials. Lung Cancer. 2014; 83: 231-9. [CrossRef] [PubMed] [Google Scholar]
  83. Shi Y, Sun Y, Yu J, Ding C, Wang Z, Wang C, et al. China experts consensus on the diagnosis and treatment of advanced stage primary lung cancer (2016 version). Asia Pac J Clin Oncol. 2017; 13: 87-103. [CrossRef] [PubMed] [Google Scholar]
  84. Han SY, Zhao MB, Zhuang GB, Li PP. Marsdenia tenacissima extract restored gefitinib sensitivity in resistant non-small cell lung cancer cells. Lung Cancer. 2012; 75: 30-7. [CrossRef] [PubMed] [Google Scholar]
  85. Grigoriu B, Berghmans T, Meert AP. Management of EGFR mutated nonsmall cell lung carcinoma patients. Eur Respir J. 2015; 45: 1132-41. [CrossRef] [PubMed] [Google Scholar]
  86. Dhillon S. Gefitinib: a review of its use in adults with advanced non-small cell lung cancer. Target Oncol. 2015; 10: 153-70. [CrossRef] [PubMed] [Google Scholar]
  87. Li F, Zhu T, Cao B, Wang J, Liang L. Apatinib enhances antitu-mour activity of EGFR-TKIs in non-small cell lung cancer with EGFR-TKI resistance. Eur J Cancer. 2017; 84: 184-92. [CrossRef] [PubMed] [Google Scholar]
  88. Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, et al. A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol. 1991; 9: 491-8. [CrossRef] [PubMed] [Google Scholar]
  89. Csoka K, Liliemark J, Larsson R, Nygren P. Evaluation of the cytotoxic activity of gemcitabine in primary cultures of tumor cells from patients with hematologic or solid tumors. Semin Oncol. 1995; 22: 47-53. [Google Scholar]
  90. Pollera CF, Ceribelli A, Crecco M, Oliva C, Calabresi F. Prolonged infusion gemcitabine: a clinical phase I study at low-(300 mg/m2) and high-dose (875 mg/m2) levels. Invest New Drugs. 1997; 15: 115-21. [CrossRef] [PubMed] [Google Scholar]
  91. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012; 62: 220-41. [CrossRef] [PubMed] [Google Scholar]
  92. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011; 378: 607-20. [CrossRef] [PubMed] [Google Scholar]
  93. Paez D, Labonte MJ, Lenz HJ. Pancreatic cancer: medical management (novel chemotherapeutics). Gastroenterol Clin North Am. 2012; 41: 189-209. [CrossRef] [PubMed] [Google Scholar]
  94. Heinemann V. Gemcitabine in the treatment of advanced pancreatic cancer: a comparative analysis of randomized trials. Semin Oncol. 2002; 29: 9-16. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  95. Erten C, Demir L, Somali I, Alacacioglu A, Kucukzeybek Y, Akyol M, et al. Cisplatin plus gemcitabine for treatment of breast cancer patients with brain metastases; a preferential option for triple negative patients? Asian Pac J Cancer Prev. 2013; 14: 3711-7. [CrossRef] [PubMed] [Google Scholar]
  96. Franchina T, Adamo B, Ricciardi GR, Caristi N, Agostino RM, Proto C, et al. Activity of pegylated liposomal doxorubicin in combination with gemcitabine in triple negative breast cancer with skin involvement: two case reports. Cancer Biol Ther. 2012; 13: 472-6. [CrossRef] [PubMed] [Google Scholar]
  97. Kim M, Chin YW, Lee EJ. alpha, gamma-Mangostins Induces Autophagy and Shows Synergistic Effectwith Gemcitabine in Pancreatic Cancer Cell Lines. Biomol Ther. (Seoul) 2017. [PubMed] [Google Scholar]
  98. Herrmann R, Bodoky G, Ruhstaller T, Glimelius B, Bajetta E, Schuller J, et al. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group. J Clin Oncol. 2007; 25: 2212-7. [CrossRef] [PubMed] [Google Scholar]
  99. Heinemann V, Quietzsch D, Gieseler F, Gonnermann M, Schonekas H, Rost A, et al. Randomized phase III trial of gemcit-abine plus cisplatin compared with gemcitabine alone in advanced pancreatic cancer. J Clin Oncol. 2006; 24: 3946-52. [CrossRef] [PubMed] [Google Scholar]
  100. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007; 25: 1960-6. [CrossRef] [PubMed] [Google Scholar]
  101. Wang Y, Schmid-Bindert G, Zhou C. Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther Adv Med Oncol. 2012; 4: 19-29. [CrossRef] [PubMed] [Google Scholar]
  102. Abera MB, Kazanietz MG. Protein kinase Calpha mediates erlo-tinib resistance in lung cancer cells. Mol Pharmacol. 2015; 87: 832-41. [CrossRef] [PubMed] [Google Scholar]
  103. Zhao J, Guerrero A, Kelnar K, Peltier HJ, Bader AG. Synergy between next generation EGFR tyrosine kinase inhibitors and miR-34a in the inhibition of non-small cell lung cancer. Lung Cancer. 2017; 108: 96-102. [CrossRef] [PubMed] [Google Scholar]
  104. Lee CB, Stinchcombe TE, Rosenman JG, Socinski MA. Therapeutic advances in local-regional therapy for stage III non-small-cell lung cancer: evolving role of dose-escalated conformal (3-dimen-sional) radiation therapy. Clin Lung Cancer. 2006; 8: 195-202. [CrossRef] [PubMed] [Google Scholar]
  105. Roswit B, Patno ME, Rapp R, Veinbergs A, Feder B, Stuhlbarg J, et al. The survival of patients with inoperable lung cancer: a large-scale randomized study of radiation therapy versus placebo. Radiology. 1968; 90: 688-97. [CrossRef] [PubMed] [Google Scholar]
  106. Johnson DH, Einhorn LH, Bartolucci A, Birch R, Omura G, Perez CA, et al. Thoracic radiotherapy does not prolong survival in patients with locally advanced, unresectable non-small cell lung cancer. Ann Intern Med. 1990; 113: 33-8. [CrossRef] [PubMed] [Google Scholar]
  107. Dillman RO, Berry C, Ryan KP, Green MR, Seagren SL. Recent outcomes for patients with carcinoma of the lung. Cancer Invest. 1991; 9: 9-17. [CrossRef] [PubMed] [Google Scholar]
  108. Payne DG. Non-small-cell lung cancer: should unresectable stage III patients routinely receive high-dose radiation therapy? J Clin Oncol. 1988; 6: 552-8. [CrossRef] [PubMed] [Google Scholar]
  109. Jung JW, Hwang SY, Hwang JS, Oh ES, Park S, Han IO. Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer. 2007; 43: 1214-24. [CrossRef] [PubMed] [Google Scholar]
  110. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W. Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res. 2001; 61: 2744-50. [Google Scholar]
  111. Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O'Reilly MS. Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res. 2001; 61: 2207-11. [Google Scholar]
  112. Giaccone G. Clinical impact of novel treatment strategies. Onco-gene. 2002; 21: 6970-81. [CrossRef] [Google Scholar]
  113. Marino P, Preatoni A, Cantoni A. Randomized trials of radiotherapy alone versus combined chemotherapy and radiotherapy in stages IIIa and IIIb nonsmall cell lung cancer. A meta-analysis. Cancer. 1995; 76: 593-601. [Google Scholar]
  114. Sause WT, Scott C, Taylor S, Johnson D, Livingston R, Komaki R, et al. Radiation Therapy Oncology Group (RT0G) 88-08 and Eastern Cooperative Oncology Group (EC0G) 4588: preliminary results of a phase III trial in regionally advanced, unresectable non-small-cell lung cancer. J Natl Cancer Inst. 1995; 87: 198-205. [CrossRef] [PubMed] [Google Scholar]
  115. Zhang T, Cui GB, Zhang J, Zhang F, Zhou YA, Jiang T, et al. Inhibition of PI3 kinases enhances the sensitivity of non-small cell lung cancer cells to ionizing radiation. Oncol Rep. 2010; 24: 1683-9. [PubMed] [Google Scholar]
  116. Park SY, Kim YM, Pyo H. Gefitinib radiosensitizes non-small cell lung cancer cells through inhibition of ataxia telangiectasia mutated. Mol Cancer. 2010; 9: 222. [CrossRef] [PubMed] [Google Scholar]
  117. Hsiao WL, Liu L. The role of traditional Chinese herbal medicines in cancer therapy--from TCM theory to mechanistic insights. Plan-ta Med. 2010; 76: 1118-31. [CrossRef] [Google Scholar]
  118. Harvey AL, Cree IA. High-throughput screening of natural products for cancer therapy. Planta Med. 2010; 76: 1080-6. [CrossRef] [PubMed] [Google Scholar]
  119. Aravindaram K, Yang NS. Anti-inflammatory plant natural products for cancer therapy. Planta Med. 2010; 76: 1103-17. [CrossRef] [PubMed] [Google Scholar]
  120. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem. 1997; 243: 527-36. [CrossRef] [PubMed] [Google Scholar]
  121. Tirado OM, Mateo-Lozano S, Notario V. Roscovitine is an effective inducer of apoptosis of Ewing’s sarcoma family tumor cells in vitro and in vivo. Cancer Res. 2005; 65: 9320-7. [CrossRef] [Google Scholar]
  122. Mohapatra S, Chu B, Zhao X, Pledger WJ. Accumulation of p53 and reductions in XIAP abundance promote the apoptosis of prostate cancer cells. Cancer Res. 2005; 65: 7717-23. [CrossRef] [Google Scholar]
  123. Lacrima K, Valentini A, Lambertini C, Taborelli M, Rinaldi A, Zucca E, et al. In vitro activity of cyclin-dependent kinase inhibitor CYC202 (Seliciclib, R-roscovitine) in mantle cell lymphomas. Ann Oncol. 2005; 16: 1169-76. [CrossRef] [PubMed] [Google Scholar]
  124. Zhang F, Zhang T, Gu ZP, Zhou YA, Han Y, Li XF, et al. Enhancement of radiosensitivity by roscovitine pretreatment in human non-small cell lung cancer A549 cells. J Radiat Res. (Tokyo) 2008; 49: 541-8. [CrossRef] [Google Scholar]
  125. Zhang F, Zhang T, Jiang T, Zhang R, Teng ZH, Li C, et al. Wort-mannin potentiates roscovitine-induced growth inhibition in human solid tumor cells by repressing PI3K/Akt pathway. Cancer Lett. 2009; 286: 232-9. [CrossRef] [Google Scholar]
  126. Park SE, Yoo HS, Jin CY, Hong SH, Lee YW, Kim BW, et al. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food Chem Toxicol. 2009; 47: 1667-75. [CrossRef] [PubMed] [Google Scholar]
  127. McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, et al. Effects of resveratrol, curcumin, ber-berine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2017; 9: 1477-536. [Google Scholar]
  128. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004; 24: 2783-840. [PubMed] [Google Scholar]
  129. Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: a molecule whose time has come? And gone? Clin Biochem. 1997; 30: 91-113. [Google Scholar]
  130. Smoliga JM, Baur JA, Hausenblas HA. Resveratrol and health--a comprehensive review of human clinical trials. Mol Nutr Food Res. 2011; 55: 1129-41. [CrossRef] [PubMed] [Google Scholar]
  131. Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, et al. Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol. 2007; 224: 274-83. [CrossRef] [PubMed] [Google Scholar]
  132. Stef G, Csiszar A, Lerea K, Ungvari Z, Veress G. Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. J Cardiovasc Pharmacol. 2006; 48: 1-5. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  133. Bhat KPL, Kosmeder JW, 2nd, Pezzuto JM. Biological effects of resveratrol. Antioxid Redox Signal. 2001; 3: 1041-64. [CrossRef] [PubMed] [Google Scholar]
  134. Whyte L, Huang YY, Torres K, Mehta RG. Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res. 2007; 67: 12007-17. [CrossRef] [Google Scholar]
  135. Kim YA, Lee WH, Choi TH, Rhee SH, Park KY, Choi YH. Involvement of p21WAF1/CIp1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int J Oncol. 2003; 23: 1143-9. [PubMed] [Google Scholar]
  136. Patel KR, Brown VA, Jones DJ, Britton RG, Hemingway D, Miller AS, et al. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res. 2010; 70: 7392-9. [CrossRef] [Google Scholar]
  137. Zhu J, Song X, Lin HP, Young DC, Yan S, Marquez VE, et al. Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J Natl Cancer Inst. 2002; 94: 1745-57. [CrossRef] [PubMed] [Google Scholar]
  138. Zhu J, Huang JW, Tseng PH, Yang YT, Fowble J, Shiau CW, et al. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res. 2004; 64: 4309-18. [CrossRef] [Google Scholar]
  139. Kucab JE, Lee C, Chen CS, Zhu J, Gilks CB, Cheang M, et al. Celecoxib analogues disrupt Akt signaling, which is commonly activated in primary breast tumours. Breast Cancer Res. 2005; 7:R796-807. [CrossRef] [PubMed] [Google Scholar]
  140. Tong Z, Wu X, Chen CS, Kehrer JP. Cytotoxicity of a non-cy-clooxygenase-2 inhibitory derivative of celecoxib in non-small-cell lung cancer A549 cells. Lung Cancer. 2006; 52: 117-24. [CrossRef] [PubMed] [Google Scholar]
  141. Tan YH, Lee KH, Lin T, Sun YC, Hsieh-Li HM, Juan HF, et al. Cytotoxicity and proteomics analyses of OSU03013 in lung cancer. Clin Cancer Res. 2008; 14: 1823-30. [CrossRef] [PubMed] [Google Scholar]
  142. Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A. Inhibition of Mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin antican-cer activity. Cancer Res. 2006; 66: 4410-8. [CrossRef] [Google Scholar]
  143. Zhang Q, Zhao XH, Wang ZJ. Flavones and flavonols exert cy-totoxic effects on a human oesophageal adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing apoptosis. Food Chem Toxicol. 2008; 46: 2042-53. [CrossRef] [PubMed] [Google Scholar]
  144. Nadova S, Miadokova E, Cipak L. Flavonoids potentiate the efficacy of cytarabine through modulation of drug-induced apoptosis. Neoplasma. 2007; 54: 202-6. [PubMed] [Google Scholar]
  145. Wang ZH, Kang KA, Zhang R, Piao MJ, Jo SH, Kim JS, et al. Myricetin suppresses oxidative stress-induced cell damage via both direct and indirect antioxidant action. Environ Toxicol Phar. 2010; 29: 12-18. [CrossRef] [Google Scholar]
  146. Shvarev IF, Tsetlin AL. [Anti-blastic properties of berberine and its derivatives]. Farmakol Toksikol 1972; 35: 73-5. [PubMed] [Google Scholar]
  147. Ikram M.A. review on the chemical and pharmacological aspects of genus Berberis. Planta Med. 1975; 28: 353-8. [CrossRef] [PubMed] [Google Scholar]
  148. Creasey WA. Biochemical effects of berberine. Biochem Pharmacol. 1979; 28: 1081-4. [CrossRef] [PubMed] [Google Scholar]
  149. Ivanovska N, Philipov S. Study on the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids. Int J Immunopharmacol. 1996; 18: 553-61. [CrossRef] [PubMed] [Google Scholar]
  150. Peng PL, Hsieh YS, Wang CJ, Hsu JL, Chou FP. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol Appl Pharmacol. 2006; 214: 8-15. [CrossRef] [PubMed] [Google Scholar]
  151. Jin P, Zhang C, Li N. Berberine exhibits antitumor effects in human ovarian cancer cells. Anticancer Agents Med Chem. 2015; 15: 511-6. [CrossRef] [Google Scholar]
  152. Wang K, Zhang C, Bao J, Jia X, Liang Y, Wang X, et al. Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci Rep. 2016; 6: 26064. [CrossRef] [PubMed] [Google Scholar]
  153. Lee TH, Lee CK, Tsou WL, Liu SY, Kuo MT, Wen WC. A new cytotoxic agent from solid-state fermented mycelium of Antrodia camphorata. Planta Med. 2007; 73: 1412-5. [CrossRef] [PubMed] [Google Scholar]
  154. Kumar VB, Yuan TC, Liou JW, Yang CJ, Sung PJ, Weng CF. An-troquinonol inhibits NSCLC proliferation by altering PI3K/mT0R proteins and miRNA expression profiles. Mutat Res. 2011; 707: 42-52. [CrossRef] [PubMed] [Google Scholar]
  155. Chiang PC, Lin SC, Pan SL, Kuo CH, Tsai IL, Kuo MT, et al. Antroquinonol displays anticancer potential against human hepato-cellular carcinoma cells: a crucial role of AMPK and mT0R pathways. Biochem Pharmacol 2010; 79: 162-71. [CrossRef] [PubMed] [Google Scholar]
  156. Yu CC, Chiang PC, Lu PH, Kuo MT, Wen WC, Chen P, et al. Antroquinonol, a natural ubiquinone derivative, induces a cross talk between apoptosis, autophagy and senescence in human pancreatic carcinoma cells. J Nutr Biochem. 2012; 23: 900-7. [CrossRef] [PubMed] [Google Scholar]
  157. Lin HC, Lin MH, Liao JH, Wu TH, Lee TH, Mi FL, et al. Antroquinonol, a Ubiquinone Derivative from the Mushroom Antrodia camphorata, Inhibits Colon Cancer Stem Cell-like Properties: Insights into the Molecular Mechanism and Inhibitory Targets. J Agric Food Chem. 2017; 65: 51-59. [CrossRef] [PubMed] [Google Scholar]