Open Access
Issue
BioMedicine
Volume 7, Number 4, December 2017
Article Number 24
Number of page(s) 5
DOI https://doi.org/10.1051/bmdcn/2017070424
Published online 13 November 2017
  1. Cai, Y, Luo Q, Sun M, Corke L. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004; 74: 2157-84. [CrossRef] [PubMed] [Google Scholar]
  2. Toyokuni, S,Tanaka T, Kawaguchi W, Fang NR, Ozeki M, Akatsuka S, et al. Effects of the phenolic contents of Mauritian endemic plant extracts on promoter activities of antioxidant enzymes. Free Radic Res. 2003; 37: 1215-24. [CrossRef] [PubMed] [Google Scholar]
  3. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr. 2004; 134: 3479S-85S. [CrossRef] [PubMed] [Google Scholar]
  4. Kokanova-Nedialkova Z, Nedialkov P, Nikolov S. The genus che-nopodium: Phytochemistry, ethnopharmacology and pharmacology. Pharmacogn Rev. 2009; 3: 280-306. [Google Scholar]
  5. Bhargava, A,Shukla S, Ohri O. Chenopodium quinoa-An Indian perspective. Industrial Crops and Products. 2006; 23: 73-87. [CrossRef] [Google Scholar]
  6. Gordillo-Bastidas E, Diaz-Rizzolo DA, Roura E, Massanes T, Gomis R. Quinoa (Chenopodium quinoa Willd.), from Nutritional Value to Potential Health Benefits: An Integrative Review. J Nutr Food Sci. 2016; 6: 497. [Google Scholar]
  7. Taga MS, Miller EE, Pratt DE. Chia seeds as a source of natural lipid antioxidants. J the Am Oil Chem Soc. 1984; 61: 928-31. [CrossRef] [Google Scholar]
  8. Shimada, K,Fujikawa K, Yahara K, Nakamura T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodex-trin emulsion. J Agric Food Chem. 1992; 40: 945-48. [CrossRef] [Google Scholar]
  9. Dinis TC, Maderia VM, Almeida LM. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 1994; 315: 161-9. [CrossRef] [PubMed] [Google Scholar]
  10. Schafer FQ, Qian SY, Buettner GR. Iron and free radical oxidations in cell membranes. Cell Mol Biol. (Noisy-le-grand) 2000; 46: 657-62. [PubMed] [Google Scholar]
  11. Wong CC, Li HB, Cheng KW, Chen F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem. 2006; 97: 705-11. [CrossRef] [Google Scholar]
  12. Ajayi AM, Tanayen JK, Magomere A, Ezeonwumelu JOC. An-tinociceptive and anti-inflammatory effects of aqueous extract of Chenopodium opulifolium (Italic) schrad leaves. J Intercult Ethnop-harmacol. 2017; 6: 14-21. [CrossRef] [EDP Sciences] [Google Scholar]
  13. Fresco, P,Borges F, Diniz C, Marques MP. New insights on the an-ticancer properties of dietary polyphenols. Med Res Rev. 2006; 26: 747-66. [CrossRef] [PubMed] [Google Scholar]
  14. Braughler JM, Duncan LA, Chase RL. The involvement of iron in lipid peroxidation. J Biol Chem. 1986; 261: 1028-29. [Google Scholar]
  15. Gawlik-Dziki U, Swieca M, Sulkowski M, Dziki D, Baraniak B, Czyz J. Antioxidant and anticancer activities of Chenopodium qui-noa leaves extracts - in vitro study. Food Chem Toxicol. 2013; 57: 154-60. [CrossRef] [PubMed] [Google Scholar]
  16. Moncada, S,Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991; 43: 109-42. [PubMed] [Google Scholar]
  17. Pacher, P,Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007; 87: 315-424. [CrossRef] [PubMed] [Google Scholar]
  18. Taira, J,Nanbu H, Ueda K. Nitric oxide-scavenging compounds in Agrimonia pilosa Ledeb on LPS-induced RAW264.7 macrophages. Food Chem. 2009; 115: 1221-27. [CrossRef] [Google Scholar]
  19. Conforti, F,Menichini F. Phenolic compounds from plants as nitric oxide production inhibitors. Curr Med Chem. 2011; 18: 1137-45. [CrossRef] [PubMed] [Google Scholar]
  20. Udenigwe CC, Lu YL, Han CH, Hou WC, Aluko RE. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chemistry. 2009; 116: 277-84. [CrossRef] [Google Scholar]
  21. Sheu, F,Lai HH, Yen GC. Suppression effect of soy isoflavones on nitric oxide production in RAW 264.7 macrophages. J Agric Food Chem. 2001; 49: 1767-72. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.