Open Access
Volume 8, Number 1, March 2018
Article Number 2
Number of page(s) 6
Published online 26 February 2018
  1. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000; 2: 1051-60. [CrossRef] [PubMed] [Google Scholar]
  2. Bialvaei AZ, Kafil HS, Asgharzadeh M, Yousef Memar M, Yousefi M. Current methods for the identification of carbapenemases. J Chemother. 2016; 28: 1-19. [CrossRef] [PubMed] [Google Scholar]
  3. Zahedi Bialvaei A, Samadi Kafil H, Ebrahimzadeh Leylabadlo H, Asgharzadeh M, Aghazadeh M. Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. Iran J Microbiol. 2015; 7: 226-46. [PubMed] [Google Scholar]
  4. Leylabadlo HE, Asgharzadeh M, Aghazadeh M. Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. Iran J Microbiol. 2015; 7: 226. [PubMed] [Google Scholar]
  5. Rossolini G, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect. 2005; 11: 17-32. [CrossRef] [Google Scholar]
  6. Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000; 3: 247-55. [CrossRef] [PubMed] [Google Scholar]
  7. Bialvaei AZ, Kafil HS, Asgharzadeh M, Yousefi M, Aghazadeh M. How Social Networks Can Affect Infectious Disease Control: An Experience From Northwest Iran. Infect Control Hosp Epidemiol. 2016; 37: 489. [CrossRef] [Google Scholar]
  8. Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M, et al. Prevalence and molecular characterization of Class 1 integrons among clinical isolates of Pseudomonas aeruginosa in Northwest of Iran. Mol Gen Microbiol Virol. 2017; 32: 109-15. [CrossRef] [Google Scholar]
  9. Severino P, Magalhães VD. The role of integrons in the dissemination of antibiotic resistance among clinical isolates of Pseudomonas aeruginosa from an intensive care unit in Brazil. Res Microbiol. 2002; 153: 221-6. [CrossRef] [PubMed] [Google Scholar]
  10. Martinez E, de la Cruz F. Genetic elements involved in Tn21 sitespecific integration, a novel mechanism for the dissemination of antibiotic resistance genes. EMRO J. 1990; 9: 1275. [Google Scholar]
  11. Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, et al. The evolution of Class 1 integrons and the rise of antibiotic resistance. J Bacteriol. 2008; 190: 5095-100. [CrossRef] [PubMed] [Google Scholar]
  12. Recchia GD, Hall RM. Gene cassettes: a new Class of mobile element. Microbiology. 1995; 141: 3015-27. [CrossRef] [PubMed] [Google Scholar]
  13. Stokes H, O'gorman D, Recchia GD, Parsekhian M, Hall RM. Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol Microbiol. 1997; 26: 731-45. [CrossRef] [PubMed] [Google Scholar]
  14. Mazel D, Dychinco B, Webb VA, Davies J. A Distinctive Class of Integron in the Vibrio Cholerae Genome. Science. 1998; 280: 605-8. [CrossRef] [PubMed] [Google Scholar]
  15. Mazel D. Integrons and the origin of antibiotic resistance gene cassettes-super integrons with thousands of gene cassettes may have set the stage for pathogens to develop antibiotic resistance very rapidly. ASM News-American Society for Microbiology. 2004; 70: 520-5. [Google Scholar]
  16. Ruiz-Martinez L, Lopez-Jimenez L, Fuste E, Vinuesa T, Martinez JP, Vinas M. Class 1 integrons in environmental and clinical isolates of Pseudomonas aeruginosa. Intern J Antimicrob Agents. 2011; 38: 398-402. [CrossRef] [Google Scholar]
  17. Fluit AC, Schmitz FJ. Resistance integrons and super-integrons. Clin Microbiol Infect. 2004; 10: 272-88. [CrossRef] [PubMed] [Google Scholar]
  18. Gu B, Tong M, Zhao W, Liu G, Ning M, Pan S, et al. Prevalence and characterization of Class I integrons among Pseudomonas aeruginosa and Acinetobacter baumannii isolates from patients in Nanjing, China. J Clin Microbiol. 2007; 45: 241-3. [CrossRef] [Google Scholar]
  19. Xu Z, Li L, Shirtliff ME, Alam M, Yamasaki S, Shi L. Occurrence and characteristics of Class 1 and 2 integrons in Pseudomonas aeruginosa isolates from patients in southern China. J Clin Microbiol. 2009; 47: 230-4. [CrossRef] [PubMed] [Google Scholar]
  20. Najafi K, Kafil HS, Shokrian S, Azimi S, Asgharzadeh M, Yousefi M, et al. Virulence Genes and Antibiotic Resistance Profile of Pseudomonas aeruginosa Isolates in Northwest of Iran. J Pure Appl Microbiol. 2015; 9: 383-9. [Google Scholar]
  21. Clinical, Institute LS. Performance standards for antimicrobial susceptibility testing. Twenty-fourth informational supplement M100-S24. CLSI Wayne, PA; 2014. [Google Scholar]
  22. Fattahi S, Aghazadeh M, Nahaei MR, Asgharzadeh M, Kafil HS. Comparison of virulence factors fimA, papC, and hly among uropathogenic Escherichia coli isolates producing and nonproducing extended spectrum beta-lactamases. Ann Trop Med Public health. 2017; 10: 404. [CrossRef] [Google Scholar]
  23. Gholizadeh P, Maftoon H, Aghazadeh M, Asgharzadeh M, Kafil HS. Current opinions in the infection control of carbapenem-resistant Enterobacteriaceae species and Pseudomonas aeruginosa. Rev Med Microbiol. 2017; 28: 97-103. [CrossRef] [Google Scholar]
  24. Asgharzadeh M, Shahbabian K, Kafil HS, Rafi A. Use of DNA Fingerprinting in Identifying the Source Case of Tuberculosis in East Azarbaijan Province of Iran. J Med Sci. 2007; 7: 418-21. [CrossRef] [Google Scholar]
  25. Kafil HS, Mobarez AM. Spread of Enterococcal Surface Protein in Antibiotic Resistant Entero-coccus faecium and Enterococcus faecalis isolates from Urinary Tract Infections. Open Microbiol J. 2015; 9: 14-7. [CrossRef] [PubMed] [Google Scholar]
  26. Asgharzadeh M, Mazloumi A, Kafil HS, Ghazanchaei A. Mannosebinding lectin gene and promoter polymorphism in visceral leishmaniasis caused by Leishmania infantum. Pak J Biol Sci. 2007; 10: 1850-4. [CrossRef] [PubMed] [Google Scholar]
  27. Bialvaei AZ, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin. 2015; 31: 707-21. [CrossRef] [PubMed] [Google Scholar]
  28. Ren CL, Konstan MW, Yegin A, Rasouliyan L, Trzaskoma B, Morgan WJ, et al. Multiple antibiotic-resistant Pseudomonas aeruginosa and lung function decline in patients with cystic fibrosis. J Cystic Fibrosis. 2012; 11: 293-9. [CrossRef] [Google Scholar]
  29. Cholley P, Thouverez M, Hocquet D, van der Mee-Marquet N, Talon D, Bertrand X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol. 2011; 49: 2578-83. [CrossRef] [PubMed] [Google Scholar]
  30. Taccone FS, Cotton F, Roisin S, Vincent JL, Jacobs F. Optimal meropenem concentrations to treat multidrug-resistant Pseudomonas aeruginosa septic shock. Antimicrob Agents Chemother. 2012; 56: 2129-31. [CrossRef] [PubMed] [Google Scholar]
  31. Taghvaee R, Shojapour M, Sadeghi A, Pourbabaie AA. The Study of Antibiotic Resistance Pattern and the Frequency of Extended-Spectrum Beta-Lactamases (ESBL) in Pseudomonas aeruginosa Strains Isolated from Medical Centers in Arak City, Iran. Qom Univ Med Sci J. 2013; 7: 36-41. [Google Scholar]
  32. Babay HA. Antimicrobial resistance among clinical isolates of Pseudomonas aeruginosa from patients in a teaching hospital, Riyadh, Saudi Arabia, 2001-2005. Japan J infect Dis. 2007; 60: 123-5. [Google Scholar]
  33. Poonsuk K, Tribuddharat C, Chuanchuen R. Class 1 integrons in Pseudomonas aeruginosa and Acinetobacter baumannii isolated from clinical isolates. Southern Asia J Trop Med Public Health. 2012; 43: 376-84. [Google Scholar]
  34. Fazeli H, Akbari R, Moghim S, Narimani T, Arabestani MR, Ghoddousi AR. Pseudomonas aeruginosa infections in patients, hospital means, and personnel's specimens. J Res Med Sci. 2012; 17: 332-7. [Google Scholar]
  35. Gales AC, Jones RN, Turnidge J, Rennie R, Ramphal R. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis. 2001; 32 Suppl 2: S146-55. [CrossRef] [PubMed] [Google Scholar]
  36. Bonfiglio G, Carciotto V, Russo G, Stefani S, Schito GC, Debbia E, et al. Antibiotic resistance in Pseudomonas aeruginosa: an Italian survey. J Antimicrob Chemother. 1998; 41: 307-10. [CrossRef] [PubMed] [Google Scholar]
  37. Bouza E, Garcia-Garrote F, Cercenado E, Marin M, Diaz MS. Pseudomonas aeruginosa: a survey of resistance in 136 hospitals in Spain. The Spanish Pseudomonas aeruginosa Study Group. Antimicrob Agents Chemother. 1999; 43: 981-2. [PubMed] [Google Scholar]
  38. Brown PD, Izundu A. Antibiotic resistance in clinical isolates of Pseudomonas aeruginosa in Jamaica. Pan Am J Public Health. 2004; 16: 125-30. [CrossRef] [Google Scholar]
  39. Yousefi S, Nahaei M, Farajnia S, Ghojazadeh M, Akhi M, Sharifi Y, et al. Class 1 integron and Imipenem Resistance in Clinical Isolates of Pseudomonas aeruginosa: Prevalence and Antibiotic Susceptibility. Iran J Microbiol. 2010; 2: 115-21. [PubMed] [Google Scholar]
  40. Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the Class 3 integron. J Clin Microbiol. 2003; 41: 5407-13. [CrossRef] [PubMed] [Google Scholar]
  41. Yayan J, Ghebremedhin B, Rasche K. Antibiotic Resistance of Pseudomonas aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a 10-Year Period. PloS one. 2015; 10: e0139836. [Google Scholar]
  42. Khosravi Y, Tay ST, Vadivelu J. Analysis of integrons and associated gene cassettes of metallo-beta-lactamase-positive Pseudomonas aeruginosa in Malaysia. J Med Microbiol. 2011; 60: 988-94. [CrossRef] [PubMed] [Google Scholar]
  43. Nikokar I, Tishayar A, Flakiyan Z, Alijani K, Rehana-Banisaeed S, Hossinpour M, et al. Antibiotic resistance and frequency of Class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran J Microbiol. 2013; 5: 36-41. [PubMed] [Google Scholar]
  44. Sartelli M, Labricciosa FM, Barbadoro P, Pagani L, Ansaloni L, Brink AJ, et al. The Global Alliance for Infections in Surgery: defining a model for antimicrobial stewardship-results from an international cross-sectional survey. World J Emerg Surg. 2017; 12: 017-0145. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.