Open Access
Volume 8, Number 1, March 2018
Article Number 2
Number of page(s) 6
Published online 26 February 2018
  1. Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect. 2000; 2: 1051-60. [CrossRef] [PubMed] [Google Scholar]
  2. Bialvaei AZ, Kafil HS, Asgharzadeh M, Yousef Memar M, Yousefi M. Current methods for the identification of carbapenemases. J Chemother. 2016; 28: 1-19. [CrossRef] [PubMed] [Google Scholar]
  3. Zahedi Bialvaei A, Samadi Kafil H, Ebrahimzadeh Leylabadlo H, Asgharzadeh M, Aghazadeh M. Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. Iran J Microbiol. 2015; 7: 226-46. [PubMed] [Google Scholar]
  4. Leylabadlo HE, Asgharzadeh M, Aghazadeh M. Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. Iran J Microbiol. 2015; 7: 226. [PubMed] [Google Scholar]
  5. Rossolini G, Mantengoli E. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect. 2005; 11: 17-32. [CrossRef] [Google Scholar]
  6. Hancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000; 3: 247-55. [CrossRef] [PubMed] [Google Scholar]
  7. Bialvaei AZ, Kafil HS, Asgharzadeh M, Yousefi M, Aghazadeh M. How Social Networks Can Affect Infectious Disease Control: An Experience From Northwest Iran. Infect Control Hosp Epidemiol. 2016; 37: 489. [CrossRef] [Google Scholar]
  8. Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M, et al. Prevalence and molecular characterization of Class 1 integrons among clinical isolates of Pseudomonas aeruginosa in Northwest of Iran. Mol Gen Microbiol Virol. 2017; 32: 109-15. [CrossRef] [Google Scholar]
  9. Severino P, Magalhães VD. The role of integrons in the dissemination of antibiotic resistance among clinical isolates of Pseudomonas aeruginosa from an intensive care unit in Brazil. Res Microbiol. 2002; 153: 221-6. [CrossRef] [PubMed] [Google Scholar]
  10. Martinez E, de la Cruz F. Genetic elements involved in Tn21 sitespecific integration, a novel mechanism for the dissemination of antibiotic resistance genes. EMRO J. 1990; 9: 1275. [Google Scholar]
  11. Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, et al. The evolution of Class 1 integrons and the rise of antibiotic resistance. J Bacteriol. 2008; 190: 5095-100. [CrossRef] [PubMed] [Google Scholar]
  12. Recchia GD, Hall RM. Gene cassettes: a new Class of mobile element. Microbiology. 1995; 141: 3015-27. [CrossRef] [PubMed] [Google Scholar]
  13. Stokes H, O'gorman D, Recchia GD, Parsekhian M, Hall RM. Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol Microbiol. 1997; 26: 731-45. [CrossRef] [PubMed] [Google Scholar]
  14. Mazel D, Dychinco B, Webb VA, Davies J. A Distinctive Class of Integron in the Vibrio Cholerae Genome. Science. 1998; 280: 605-8. [CrossRef] [PubMed] [Google Scholar]
  15. Mazel D. Integrons and the origin of antibiotic resistance gene cassettes-super integrons with thousands of gene cassettes may have set the stage for pathogens to develop antibiotic resistance very rapidly. ASM News-American Society for Microbiology. 2004; 70: 520-5. [Google Scholar]
  16. Ruiz-Martinez L, Lopez-Jimenez L, Fuste E, Vinuesa T, Martinez JP, Vinas M. Class 1 integrons in environmental and clinical isolates of Pseudomonas aeruginosa. Intern J Antimicrob Agents. 2011; 38: 398-402. [CrossRef] [Google Scholar]
  17. Fluit AC, Schmitz FJ. Resistance integrons and super-integrons. Clin Microbiol Infect. 2004; 10: 272-88. [CrossRef] [PubMed] [Google Scholar]
  18. Gu B, Tong M, Zhao W, Liu G, Ning M, Pan S, et al. Prevalence and characterization of Class I integrons among Pseudomonas aeruginosa and Acinetobacter baumannii isolates from patients in Nanjing, China. J Clin Microbiol. 2007; 45: 241-3. [CrossRef] [Google Scholar]
  19. Xu Z, Li L, Shirtliff ME, Alam M, Yamasaki S, Shi L. Occurrence and characteristics of Class 1 and 2 integrons in Pseudomonas aeruginosa isolates from patients in southern China. J Clin Microbiol. 2009; 47: 230-4. [CrossRef] [PubMed] [Google Scholar]
  20. Najafi K, Kafil HS, Shokrian S, Azimi S, Asgharzadeh M, Yousefi M, et al. Virulence Genes and Antibiotic Resistance Profile of Pseudomonas aeruginosa Isolates in Northwest of Iran. J Pure Appl Microbiol. 2015; 9: 383-9. [Google Scholar]
  21. Clinical, Institute LS. Performance standards for antimicrobial susceptibility testing. Twenty-fourth informational supplement M100-S24. CLSI Wayne, PA; 2014. [Google Scholar]
  22. Fattahi S, Aghazadeh M, Nahaei MR, Asgharzadeh M, Kafil HS. Comparison of virulence factors fimA, papC, and hly among uropathogenic Escherichia coli isolates producing and nonproducing extended spectrum beta-lactamases. Ann Trop Med Public health. 2017; 10: 404. [CrossRef] [Google Scholar]
  23. Gholizadeh P, Maftoon H, Aghazadeh M, Asgharzadeh M, Kafil HS. Current opinions in the infection control of carbapenem-resistant Enterobacteriaceae species and Pseudomonas aeruginosa. Rev Med Microbiol. 2017; 28: 97-103. [CrossRef] [Google Scholar]
  24. Asgharzadeh M, Shahbabian K, Kafil HS, Rafi A. Use of DNA Fingerprinting in Identifying the Source Case of Tuberculosis in East Azarbaijan Province of Iran. J Med Sci. 2007; 7: 418-21. [CrossRef] [Google Scholar]
  25. Kafil HS, Mobarez AM. Spread of Enterococcal Surface Protein in Antibiotic Resistant Entero-coccus faecium and Enterococcus faecalis isolates from Urinary Tract Infections. Open Microbiol J. 2015; 9: 14-7. [CrossRef] [PubMed] [Google Scholar]
  26. Asgharzadeh M, Mazloumi A, Kafil HS, Ghazanchaei A. Mannosebinding lectin gene and promoter polymorphism in visceral leishmaniasis caused by Leishmania infantum. Pak J Biol Sci. 2007; 10: 1850-4. [CrossRef] [PubMed] [Google Scholar]
  27. Bialvaei AZ, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin. 2015; 31: 707-21. [CrossRef] [PubMed] [Google Scholar]
  28. Ren CL, Konstan MW, Yegin A, Rasouliyan L, Trzaskoma B, Morgan WJ, et al. Multiple antibiotic-resistant Pseudomonas aeruginosa and lung function decline in patients with cystic fibrosis. J Cystic Fibrosis. 2012; 11: 293-9. [CrossRef] [Google Scholar]
  29. Cholley P, Thouverez M, Hocquet D, van der Mee-Marquet N, Talon D, Bertrand X. Most multidrug-resistant Pseudomonas aeruginosa isolates from hospitals in eastern France belong to a few clonal types. J Clin Microbiol. 2011; 49: 2578-83. [CrossRef] [PubMed] [Google Scholar]
  30. Taccone FS, Cotton F, Roisin S, Vincent JL, Jacobs F. Optimal meropenem concentrations to treat multidrug-resistant Pseudomonas aeruginosa septic shock. Antimicrob Agents Chemother. 2012; 56: 2129-31. [CrossRef] [PubMed] [Google Scholar]
  31. Taghvaee R, Shojapour M, Sadeghi A, Pourbabaie AA. The Study of Antibiotic Resistance Pattern and the Frequency of Extended-Spectrum Beta-Lactamases (ESBL) in Pseudomonas aeruginosa Strains Isolated from Medical Centers in Arak City, Iran. Qom Univ Med Sci J. 2013; 7: 36-41. [Google Scholar]
  32. Babay HA. Antimicrobial resistance among clinical isolates of Pseudomonas aeruginosa from patients in a teaching hospital, Riyadh, Saudi Arabia, 2001-2005. Japan J infect Dis. 2007; 60: 123-5. [Google Scholar]
  33. Poonsuk K, Tribuddharat C, Chuanchuen R. Class 1 integrons in Pseudomonas aeruginosa and Acinetobacter baumannii isolated from clinical isolates. Southern Asia J Trop Med Public Health. 2012; 43: 376-84. [Google Scholar]
  34. Fazeli H, Akbari R, Moghim S, Narimani T, Arabestani MR, Ghoddousi AR. Pseudomonas aeruginosa infections in patients, hospital means, and personnel's specimens. J Res Med Sci. 2012; 17: 332-7. [PubMed] [Google Scholar]
  35. Gales AC, Jones RN, Turnidge J, Rennie R, Ramphal R. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis. 2001; 32 Suppl 2: S146-55. [CrossRef] [PubMed] [Google Scholar]
  36. Bonfiglio G, Carciotto V, Russo G, Stefani S, Schito GC, Debbia E, et al. Antibiotic resistance in Pseudomonas aeruginosa: an Italian survey. J Antimicrob Chemother. 1998; 41: 307-10. [CrossRef] [PubMed] [Google Scholar]
  37. Bouza E, Garcia-Garrote F, Cercenado E, Marin M, Diaz MS. Pseudomonas aeruginosa: a survey of resistance in 136 hospitals in Spain. The Spanish Pseudomonas aeruginosa Study Group. Antimicrob Agents Chemother. 1999; 43: 981-2. [PubMed] [Google Scholar]
  38. Brown PD, Izundu A. Antibiotic resistance in clinical isolates of Pseudomonas aeruginosa in Jamaica. Pan Am J Public Health. 2004; 16: 125-30. [CrossRef] [Google Scholar]
  39. Yousefi S, Nahaei M, Farajnia S, Ghojazadeh M, Akhi M, Sharifi Y, et al. Class 1 integron and Imipenem Resistance in Clinical Isolates of Pseudomonas aeruginosa: Prevalence and Antibiotic Susceptibility. Iran J Microbiol. 2010; 2: 115-21. [PubMed] [Google Scholar]
  40. Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the Class 3 integron. J Clin Microbiol. 2003; 41: 5407-13. [CrossRef] [PubMed] [Google Scholar]
  41. Yayan J, Ghebremedhin B, Rasche K. Antibiotic Resistance of Pseudomonas aeruginosa in Pneumonia at a Single University Hospital Center in Germany over a 10-Year Period. PloS one. 2015; 10: e0139836. [Google Scholar]
  42. Khosravi Y, Tay ST, Vadivelu J. Analysis of integrons and associated gene cassettes of metallo-beta-lactamase-positive Pseudomonas aeruginosa in Malaysia. J Med Microbiol. 2011; 60: 988-94. [CrossRef] [PubMed] [Google Scholar]
  43. Nikokar I, Tishayar A, Flakiyan Z, Alijani K, Rehana-Banisaeed S, Hossinpour M, et al. Antibiotic resistance and frequency of Class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran J Microbiol. 2013; 5: 36-41. [PubMed] [Google Scholar]
  44. Sartelli M, Labricciosa FM, Barbadoro P, Pagani L, Ansaloni L, Brink AJ, et al. The Global Alliance for Infections in Surgery: defining a model for antimicrobial stewardship-results from an international cross-sectional survey. World J Emerg Surg. 2017; 12: 017-0145. [Google Scholar]