Open Access
Review
Issue
BioMedicine
Volume 8, Number 2, June 2018
Article Number 7
Number of page(s) 15
DOI https://doi.org/10.1051/bmdcn/2018080207
Published online 28 May 2018
  1. Marincola FM. Translational medicine: a two-way road. J Transl Med. 2003; 1: 1-2. [CrossRef] [PubMed] [Google Scholar]
  2. Moskvin SV. The effectiveness of laser therapy. Series “Effective laser therapy”. Moscow-Tver’: Triada. 2: 2014. [Google Scholar]
  3. Gerasimenko MYu, Geynits AV, Moskvin SV, Astahkov PV, Babushkina GV, Gushchina, et al. Laser therapy in medical rehabilitation and prevention programs: clinical guidelines. FSBI “Russian Scientific Center for Medical Rehabilitation and Balneology” Ministry of Health of Russia, FSBI “State Scientific Center of Laser Medicine of FMBA of Russia”. Moscow, 2015. [Google Scholar]
  4. Bozhedomov VA, Rokhlikov IM, Tretyakov AA, Lipatova NA, Vinogradov IV. Andrologic aspects of infertile marriage. Meditsinskiy sovet. 2013; 8: 13-7. [Google Scholar]
  5. Ol’ D, Shuster T, Kvolich S. Male infertility. In: Fal’kone T, Kherd V, eds. Reproductive medicine and surgery. 2013; 616-31. [Google Scholar]
  6. Jungwirth A, Diemer T, Dohle GR, Giwercman A, Kopa Z, Krausz C, et al. Male infertility. EAU. 2010. [Google Scholar]
  7. WHO Manual for the Standardized Investigation, Diagnosis and Management of the Infertile Male. Cambridge: Cambridge University Press. 2000; 91. [Google Scholar]
  8. Shcheplev PA, Apolikhin OI. Male infertility. Consensus discussion. Bull of Reprod Health. 2010; 3-4: 37-44. [CrossRef] [Google Scholar]
  9. Nuti F, Krausz C. Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod. Biomed. Online 2008; 16(4): 504-13. [CrossRef] [PubMed] [Google Scholar]
  10. Miktadova AV, Mashkina EV, Volosovtscova GI, Koygerova ES, Sarayev KN, Shkurat TP. Polymorphism of folate cycle genes and male infertility. Valeologiya. 2014; 1: 38-44. [Google Scholar]
  11. Moskvin SV, Khadartsev AA. Laser light - it can harm them? (literature review). J New Med Technol. 2016; 23(3): 265-83. [Google Scholar]
  12. Alyayev YuG, Grigoryan VA, Chalyy ME. Impairment of sexual and reproductive function in men. Moscow: Litterra, 2006. [Google Scholar]
  13. Bozhedomov VA. The male factor in childless marriage - problemsolving strategies. Urologiya. 2016; S1: 29-35. [Google Scholar]
  14. Chalyi ME, Akhvlediani ND, Kharchilava RR. Male infertility. Urologiya. 2017; S2: 4-19. [CrossRef] [Google Scholar]
  15. Nieschlag E, Behre HM, Nieschlag S. Andrology: Male Reproductive Health and Dysfunction. Springer-Verlag Berlin, Heidelberg; 2010. [Google Scholar]
  16. Naumenko VA, Kushch AA. Herpes viruses and male infertility - is there any relationship? Probl virology. 2013; 58(3): 4-9. [Google Scholar]
  17. Naumenko VA, Tyulenev YuA, Pushkar DYu, Segal AS, Kovalev VA, Kurilo LF, et al. Effect of Herpes Simplex virus on spermatogenesis. Urologiya. 2011; 6: 32-6. [Google Scholar]
  18. Schuppe HC, Pilatz A, Hossain H, Wagenlehner F, Weidner W. Urogenital infection as a risk factor for male infertility. Dtsch Arztebl Int. 2017; 114(19): 339-46. doi: 10.3238/arztebl. 2017. 0339. [PubMed] [Google Scholar]
  19. Al-Shukri SH, Kuzmin IV, Slesarevskaya MN, Sokolov AV. The effect of low-intensity laser radiation on semen parameters in patients with chronic prostatitis. Urolog vedom. 2015; 5(4): 8-12. [CrossRef] [Google Scholar]
  20. Balter RB, Mikhaylov DV, Ivanova TV. Infertile marriage. Samara, 2015. [Google Scholar]
  21. Zhiborev BN. Varicocele and male sterility in view of polygenic hypogonadism nature and the manifestation of dysplasia syndrome of the connective tissue. Rossiyskiy mediko-biologicheskiy vestnik im. akademika I.P. Pavlova. 2007; 4: 72-9. [Google Scholar]
  22. Condorelli RA, Russo GI, Calogero AE, Morgia G, La Vignera S. Chronic prostatitis and its detrimental impact on sperm parameters: a systematic review and meta-analysis. J Endocrinol Invest. 2017; 40(11): 1209-18. doi: 10.1007/s40618-017-0684-0. [CrossRef] [PubMed] [Google Scholar]
  23. Giamarellou H, Tympanidis R, Bitos N, Leonidas E, Daikos GK. Infertility and chronic prostatitis. Andrologia. 1984; 16(5): 417-22. [Google Scholar]
  24. Pavlova ZSh, Kalinchenko SYu, Kamalov AA, Tishova YuA, Zhuykov AV, Gusakova DA, et al. Vitamin D dificiency and male infertility actual problems of the 21st century: male infertility, obesity and vitamin D - is there a relationship? Vest Ural Med Akadem Nauki. 2013; 3(45): 26-32. [Google Scholar]
  25. Tyuzikov IA. Metabolic syndrome and male infertility (review). Androl Gen Surg. 2013; 2: 5-10. [Google Scholar]
  26. Arnol’di EK. Chronic prostatitis: problems, experience, prospects. Rostov-na-Donu, 1999. [Google Scholar]
  27. Imshinetskaya LP. The role of hormonal changes in the pathogenesis of sexual disorders and infertility in chronic nonspecific prostatitis [Abstract of the thesis]. Kiev. 1983. [Google Scholar]
  28. Mikhaylichenko VV. Pathogenesis, clinic, diagnosis and treatment of copulative and reproductive disorders in men with congestion in the genitourinary venous plexus [Abstract of the thesis]. Saint Petrsburg, 1996. [Google Scholar]
  29. Satybaldyyev ShR. Medical rehabilitation of patients with chronic prostatitis with reproductive dysfunction [Abstract of the thesis]. Bishkek, 2000. [Google Scholar]
  30. Fedorova TA, Moskvin SV, Apolikhina IA. Laser therapy in obstetrics and gynecology. Moscow-Tver’: Triada, 2009. [Google Scholar]
  31. Ivanchenko LP, Kozdoba AS, Moskvin SV. Laser therapy in urology. Moscow–Tver’: Triada, 2009. [Google Scholar]
  32. Moskvin SV, Gorbani NA. Laser-vacuum massage. Moscow– Tver’: Triada, 2010. [Google Scholar]
  33. Moskvin SV, Geynits AV, Kochetkov AV, Gorbani NA, Ryazanova EA, et al. Laser-vacuum massage LAZMIK in medicine and cosmetology. Moscow–Tver’: Triada, 2014. [Google Scholar]
  34. Moskvin SV. About mechanism of therapeutic influence of lowfrequency laser radiation. J New Med Technol. 2008; 15(1): 167-72. [Google Scholar]
  35. Goldstein SF. Irradiation of sperm tails by laser microbeam. J Exp Biol. 1969; 51(2): 431-41. [Google Scholar]
  36. Adamkovskaya MV. Influence of temperament, behavioral characteristics and other factors on the reproductive qualities of stallions: [Abstract of the thesis]. Divovo, 2004. [Google Scholar]
  37. Pataraya LM, Chelidze PV, Chichinadze NK. Influence of laser radiation on the ultrastructure of the testis of rats. In: Endocrinology of male infertility. Tbilisi, 1983: 83-6. [Google Scholar]
  38. Abdel-Salam Z, Harith MA. Laser researches on livestock semen and oocytes: a brief review. J Adv Res. 2015; 6(3): 311-7. doi: 10.1016/j.jare.2014.11.006. [CrossRef] [PubMed] [Google Scholar]
  39. Abdel-Salam Z, Dessouki SH, Abdel-Salam SA, Ibrahim MA, Harith MA. Green laser irradiation effects on buffalo semen. Theriogenology. 2011; 75(6): 988-94. doi: 10.1016/ j.theriogenology.2010.11.005. [CrossRef] [PubMed] [Google Scholar]
  40. Corral-Baqués MI, Rigau T, Rivera M, Rodríguez-Gil JE, Rigau J. Effect of 655-nm diode laser on dog sperm motility. Lasers Med Sci. 2005; 20(1): 28-34. doi: 10.1007/s10103-005-0332-3 [CrossRef] [Google Scholar]
  41. Corral-Baqués MI, Rivera MM, Rigau T, Rodríguez-Gil JE, Rigau J. The effect of low-level laser irradiation on dog spermatozoa motility is dependent on laser output power. Lasers Med Sci. 2009; 24(5): 703-13. [CrossRef] [Google Scholar]
  42. Corral-Baqués MI, Rivera MM, Rigau T, Rodríguez-Gil JE, Rigau J. The effect of low level laser irradiation on dog sperm motility is dependent on power laser application. Abstracts from 7th International Congress of the World Association for Laser Therapy, 2008. Photomed Laser Surg. 2009; 27(1):186. [Google Scholar]
  43. Dreyer TR, Siquera TD, Magrini PA, Fiorito PA, Assumpção MEOA, Nichi Met, et al. Biochemical and topological analysis of bovine sperm cells induced by low power laser irradiation. Medical Laser Applications and Laser-Tissue Interactions: Proceedings of SPIE-OSA Biomedical Optics, SPIE, 2011, 8092, 80920V. doi: 10.1117/12.890017 [Google Scholar]
  44. Drozdov AL, Karu TI, Chudnovskii VM, Yusupov VI, Bagratashvili VN. Influence of low-intensity red diode and laser radiation on the locomotor activity of sea urchin sperm. Dokl Biochem Biophys. 2014; 457(1): 146-8. doi: 10.1134/S1607672914040085. [CrossRef] [PubMed] [Google Scholar]
  45. Fujiwara A, Tazawa E, Yasumasu I. Activating effect of light irradiation at various wavelength on the respiration in sperm of the echiuroid, Urechis unicinctus, in the presence of carbon monoxide. J Biochem. 1991; 109(3): 486-91. [CrossRef] [PubMed] [Google Scholar]
  46. Iaffaldano N, Rosato MP, Paventi G, Pizzuto R, Gambacorta M, Manchisi A, et al. The irradiation of rabbit sperm cells with He–Ne laser prevents their in vitro liquid storage dependent damage. Anim Reprod Sci. 2010; 119: 123-9. doi: 10.1016/ j.anireprosci.2009.10.005 [CrossRef] [PubMed] [Google Scholar]
  47. Iaffaldano N, Paventi G, Pizzuto R, Passarella S, Cerolini S, Zaniboni L, et al. The post-thaw irradiation of avian spermatozoa with He–Ne laser differently affects chicken, pheasant and turkey sperm quality. Anim Reprod Sci. 2013; 142(3-4):168-72. doi: 10.1016/j.anireprosci.2013.09.010. [CrossRef] [PubMed] [Google Scholar]
  48. Lubart R, Friedmann H, Levinshal T, Lavie R, Breitbart H. Effect of light on calcium transport in bull sperm cells. J Photochem Photobiol B: Biology. 1992; 15(4): 337-41. [CrossRef] [PubMed] [Google Scholar]
  49. Lubart R, Levinshal T, Cohen N, Friedmann H, Breitbart H. Changes in calcium transport in mammalian sperm mitochondria and plasma membrane due to 633 nm and 780 nm irradiation. In: Hofstetter A, Waidelich W, Staehler G, Waidelich R, eds. Laser in der Medizin (Laser in Medicine). Berlin Heidelberg: Springer-Verlag. 1996; 449-53. doi: 10.1007/978-3-642-80264-5_107 [CrossRef] [Google Scholar]
  50. Lubart R, Friedmann H, Sinyakov M, Cohen N, Breitbart H. Changes in calcium transport in mammalian sperm mitochondria and plasma membranes caused by 780 nm irradiation. Lasers Surg Med. 1997; 21(5): 493-9. [CrossRef] [PubMed] [Google Scholar]
  51. Lubart R, Shainberg A, Eichler M. Increased ATP levels in cardiac and sperm cells immediately after broadband visible light illumination. 27th International Congress Laser Medicine & IALMS Courses jointed with W.H.A. World Health Academy “Laser Florence 2013”. Lasers Med Sci. 2013; 28(6): 1415-6. [Google Scholar]
  52. Marin ML, Velez JR. Efectos de la irradiation laser heli+neon en semen bovino [Tesis]. 1980: 19-90. [Google Scholar]
  53. Salman Yazdi R, Bakhshi S, Jannat Alipoor F, Akhoond MR, Ansary A. Effect of 830-nm diode laser irradiation on human sperm motility. Int J Fertility Sterility. 2010; 4(Suppl 1): 31-2. [Google Scholar]
  54. Salman Yazdi R, Bakhshi S, Jannat Alipoor F, Akhoond MR, Borhani S, Farrahi F, et al. Effect of 830-nm diode laser irradiation on human sperm motility. Lasers Med Sci. 2014; 29(1): 97-104. doi: 10.1007/s10103-013-1276-7. [CrossRef] [Google Scholar]
  55. Sato H. Efectos de la luz laser sobre la movilidad y la velocidad de esperma in vitro. Invest Clin Laser. 1986; 3: 80. [Google Scholar]
  56. Sato H, Landthaler M, Haina D, Schill WB. The effects of laser light on sperm motility and velocity in vitro. Andrologia. 1984; 16(1): 23-5. [CrossRef] [PubMed] [Google Scholar]
  57. Siqueira AFP, Maria FS, Mendes CM, Hamilton TR, Dalmazzo A, Dreyer TR, et al. Effects of photobiomodulation therapy (PBMT) on bovine sperm function. Lasers Med Sci. 2016; 31(6): 1245-50. [CrossRef] [Google Scholar]
  58. Wenbin Y, Wenzhong L, Mengzhao L, Baotian Z, Laizeng AI, Tongya L, et al. Effects of laser radiation on Saanen buck’s sperm energy metabolism. Proceedings of the Sixth International Conference on Goats. Beijing, China; 1996. [Google Scholar]
  59. Zan-Bar T, Bartoov B, Segal R, Yehuda R, Lavi R, Lubart R et al. Influence of visible light and ultraviolet irradiation on motility and fertility of mammalian and fish sperm. Photomed Laser Surg. 2005; 23(6): 549-55. [CrossRef] [PubMed] [Google Scholar]
  60. Shkuratov DYu, Chudnovskiy VM, Drozdov AL. The influence of low intensity laser radiation and superhigh-frequency electromagnetic fields on gametes of marine invertebrates. Tsitologiya. 1997; 39(1): 25-8. [Google Scholar]
  61. Lisichenko NL, Romodanova EA, Nardid OA, Dyubko TS, Roshal’ AD. Structural changes in the components of boar semen under the influence of small doses of laser irradiation. Fotobiol Fotomed. 2000; 3(3-4): 86. [Google Scholar]
  62. Amaroli A, Gambardella C, Ferrando S, Hanna R, Benedicenti A, Gallus L, et al. The effect of photobiomodulation on the sea urchin paracentrotus lividus (echinodermata) using higher-fluence on fertilization, embryogenesis, and larval development: an in vitro study. Photomed Laser Surg. 2017; 35(3):127-35. doi: 10.1089/ pho.2016.4136 [CrossRef] [PubMed] [Google Scholar]
  63. Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S. Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci. 2002; 1(8):547-52. [CrossRef] [PubMed] [Google Scholar]
  64. Aloyan KA, Matveyev AV, Morev VV, Korneyev IA. Physiology of sperm motility. Urolog Vedom. 2013; 3(4):14-9. [CrossRef] [Google Scholar]
  65. Ruiz-Pesini E, Diez C, Lapeña AC, Pérez-Martios A, Montoya J, Alvarez E, et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin Chem. 1998; 44(8 Pt 1):1616-20. [PubMed] [Google Scholar]
  66. Rossato M, Di Virgilio F, Rizzuto R, Galeazzi C, Foresta C. Intracellular calcium store depletion and acrosome reaction in human spermatozoa: role of calcium and plasma membrane potential. Mol Hum Reprod. 2001; 7(2):119-28. [CrossRef] [Google Scholar]
  67. Ankri R, Friedman H, Savion N, Kotev-Emeth S, Breitbart H, Lubart R. Visible light induces no formation in sperm and endothelial cells. Lasers Surg Med. 2010; 42(4): 348-52. [CrossRef] [PubMed] [Google Scholar]
  68. Porras MD, Bermudez D, Parrado C. Effects biologicos de la radiation laser IR sobre el epitelio seminifero. Invest Clin Laser. 1986; 3(1): 57-60. [Google Scholar]
  69. Celani MF, Gilioli G, Fano AR. The effect of laser radiation on Leydig cells: Functional and morphological studies. IRCS Med Sci. 1984; 12 (9): 883-4. [Google Scholar]
  70. Celani MF, Gilioli G, Montanini V, Morrama P. Further evidence that mid laser radiations may stimulate Leydig cell steroidogenesis. IRCS Med Sci. 1985; 13(4): 336-7. [Google Scholar]
  71. Celani MF, Grandi M, Gilioli G. Changes in mouse Leydig cell streoidogenesis following infrared and helium–neon laser irradiation. Exp Clin Endocrinol. 1987; 80(1): 16-22. [Google Scholar]
  72. Taha MF, Valojerdi MR. Quantitative and qualitative changes of the seminiferous epithelium induced by Ga. Al. As. (830 nm) laser radiation. Lasers Surg Med. 2004; 34(4): 352-9. [CrossRef] [PubMed] [Google Scholar]
  73. Alves MB, de Arruda RP, Batissaco L, Florez-Rodriguez SA, de Oliveira BM, Torres MA, et al. Low-level laser therapy to recovery testicular degeneration in rams: effects on seminal characteristics, scrotal temperature, plasma testosterone concentration, and testes histopathology. Lasers Med Sci. 2016; 31(3): 695-704. [CrossRef] [Google Scholar]
  74. Au DW, Chiang MW, Tang JY, Yuen BB, Wang YL, Wu RS. Impairment of sea urchin sperm quality by UV-B radiation: predicting fertilization success from sperm motility. Mar Pollut Bull. 2002; 44(7): 583-9. [CrossRef] [PubMed] [Google Scholar]
  75. Breitbart H, Wehbie R, Lardy H. Regulation of calcium transport in bovine spermatozoa. Biochim Biophys Acta. 1990; 1027(1):72-8. [CrossRef] [PubMed] [Google Scholar]
  76. Breitbart H, Wehbie RS, Lardy HA. Calcium transport in bovine sperm mitochondria: Effect of substrates and phosphate. Biochim Biophys Acta. 1990; 1026(1): 57-63. [CrossRef] [PubMed] [Google Scholar]
  77. Breitbart H, Levinshal T, Cohen N, Friedmann H, Lubart R, et al. Changes in calcium transport in mammalian sperm mitochondria and plasma membrane irradiated at 633 nm (HeNe laser). J Photochem Photobiol B. 1996; 34(2-3):117-21. [CrossRef] [PubMed] [Google Scholar]
  78. Cohen N, Lubart R, Rubinstein S, Breitbart H. Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals. Photochem Photobiol. 1998; 68(3): 407-13. [CrossRef] [PubMed] [Google Scholar]
  79. Lubart R, Breitart H, Sofer Y, Lavie R. He-Ne irradiation of human spermatozoa: enhancement in hamster egg penetration. Laser Ther. 1999; 11(4): 171-6. [Google Scholar]
  80. Lubart R, Breitbart H, Sofer Y, Cohen N, Friedmann H, Bouskila E, et al. Light irradiation of sperm cells stimulates in vitro fertilization. 20th Intern Congress “Laser Florence 2005”. Florence. 2005: S18-S19. [Google Scholar]
  81. Lubart R., Eichler M., Lavie R., Shainberg A. Flavins are source of low energy visible light-induced oxy radicals formation in cells. 20th Intern Congress “Laser Florence 2005”. Florence. 2005: S21. [Google Scholar]
  82. Lubart R., Friedmann H., Lavie R. Photobiostimulation as a function of different wavelengths. Laser Ther. 2000 12(1): 38-41. [CrossRef] [Google Scholar]
  83. Lubart R, Shainberg A, Lavie R. EPR spectroscopy of 1O2 reveals enhanced redox activity in low power laser illuminated cell cutures. 15th World Congress of the ISLSMS. Munich, 2003: 155. [Google Scholar]
  84. Lavi R., Sinyakov M., Eichler M, Isaac A, Zinman T, Shainberget A, et al. Generation of reactive oxygen species and free electrons in visible light illuminated plasma membranes. 20th Intern Congress “Laser Florence 2005”. Florence, 2005: S18. [Google Scholar]
  85. Lavi R, Shainberg A, Shneyvays V, Hochauser E, Isaac A, Zinman T, et al. Detailed analysis of reactive oxygen species induced by visible light in various cell types. Lasers Surg Med. 2010; 42(6): 473-80. [CrossRef] [PubMed] [Google Scholar]
  86. Shahar S, Wiser A, Ickowicz D, Lubart R, Shulman A, Breitbart H. Light-mediated activation reveals a key role for protein kinase A and sarcoma protein kinase in the development of sperm hyperactivated motility. Hum Reprod. 2011; 26 (9): 2274-82. doi: 10.1093/humrep/der232. [CrossRef] [Google Scholar]
  87. Meier B., Cross A.R., Hancock J.T., Kaup FJ, Jones OT. Identitication ot a superoxide-generating NADPH oxidase system in human fibroblasts. Biochem J. 1991, 275(1): 241-5. [CrossRef] [PubMed] [Google Scholar]
  88. Pal G., Dutta A., Mitra K, Grace MS, Romanczyk TB, et al. Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem Photobiol B. 2007, 86(3): 252-61. [CrossRef] [PubMed] [Google Scholar]
  89. Suzuki K.-J., Nakaji S., Kogawa T, Kumeta K, Oka E, Kitagawa N, et al. Mechanistic approach to the effects of low level laser irradiation (LLLI) with the GaAlAs diode laser on the production of reactive oxygen species from human neutrophils as a model for therapeutic modality at a cellular level. Laser Ther. 2005, 14(2): 75-81. [CrossRef] [Google Scholar]
  90. Takahashi I., Umeda T., Oyama T, Shimaya S, Yaegaki M, Matsuzaka M, et al. Effects of low incident levels of laser irradiation and other environmental factors on the production capability of reactive oxygen species from human neutrophils. Laser Ther. 2005, 14(2): 55-65. [CrossRef] [Google Scholar]
  91. Dobrin N, Zamfirescu S, Anghel AH, Topoleanu I, Nicolaia I, Gianluca P, et al. Study on the effects of exposure to different doses of energy generated by a He-Ne laser on the quality of frozen-thawed semen of ram. Rom Biotechnol Lett. 2015 20(3): 10381-7. [Google Scholar]
  92. Fernandes GHC, de Carvalho Pde T, Serra AJ, Crespilho AM, Peron JP, Rossato C, et al. The effect of low-level laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. PLoS One. 2015; 10(3): e0121487. doi: 10.1371/journal.pone.0121487 [CrossRef] [PubMed] [Google Scholar]
  93. Iaffaldano N, Meluzzi A, Manchisi A, Passarella S. Improvement of stored turkey semen quality as a result of He–Ne laser irradiation. Anim Reprod Sci. 2005; 85(3-4): 317-25. [CrossRef] [PubMed] [Google Scholar]
  94. Ocaña-Quero JM, Gomez-Villamandos R, Moreno-Millan M, Santisteban-Valenzuela JM. Biological effects of helium-neon (He-Ne) laser irradiation on acrosome reaction in bull sperm cells. J Photochem Photobiol B. 1997 40(3): 294-8. [CrossRef] [PubMed] [Google Scholar]
  95. Yeste M, Codony F, Estrada E, Lleonart M, Balasch S, Peña A, et al. Specific LED-based red light photo-stimulation procedures improve overall sperm function and reproductive performance of boar ejaculates. Sci Rep. 2016; 6:22569. doi: 10.1038/srep22569. [CrossRef] [PubMed] [Google Scholar]
  96. Ocaña Quero JM, Gomez Villamandos RJ, Moreno-Millan M, Santisteban Valenzuela JM. The effect of helium-neon laser irradiation on in vitro maturation and fertilization of immature bovine oocytes. Lasers Med Sci. 1995 10(2): 113-9. [CrossRef] [Google Scholar]
  97. Bielanski A, Hare WCD. Development in vitro of bovine embryos after exposure to continuous heliumneon laser light. Theriogenology. 1992; 37:192. [CrossRef] [Google Scholar]
  98. Hirao Y, Yanagimachi R. Detrimental effect of visible light on meiosis of mammalian eggs in vitro. J Exp Zool. 1978 206(3): 365-70. [CrossRef] [PubMed] [Google Scholar]
  99. Levi AC, Petrino R, Siccardi E. Laser irradiation on chicken embryos. Boll Sco Ital Biol Sper. 1987 3(4): 233-6. [Google Scholar]
  100. Moreno-Millan M, Ocaña-Quero JM. Preliminary results of the evaluation of the use of clinical laser He–Ne radiation in the process of bovine “in vitro fertilization”. Bulletin UASVM Vet Med. 2009; 66: 495. [Google Scholar]
  101. Ocaña-Quero JM, Gomez Villamandos R, Moreno Millan M, Santisteban Valenzuela JM. The effect of the Helium-Neon laser radiation on the in vitro fertilization of bovine oocytes. Proceedings of the 11th European Coil. Cytogenet. Domest Anim. 1994: 174-8. [Google Scholar]
  102. Soares CA, Annes K, Dreyer TR, Magrini T, Sonoda MT, da Silva Martinho H, et al. Photobiological effect of low-level laser irradiation in bovine embryo production system. J Biomed Opt. 2014; 19(3): 035006-9. doi:10.1117/1.JBO.19.3.035006 [CrossRef] [Google Scholar]
  103. Mims MF, McKinnell RG. Laser irradiation of the chick embryo germinal crescent. J Embryol Exp Morph. 1971 26(1): 31-6. [Google Scholar]
  104. Whitaker M, Smith J. Introduction. Calcium signals and developmental patterning. Philos Trans R Soc Lond B Biol Sci. 2008; 363(1495): 1307-10. doi: 10.1098/rstb.2007.2248. [CrossRef] [PubMed] [Google Scholar]
  105. Jaffe LF. Sources of calcium in egg activation: a review and hypothesis. Dev Biol. 1983 99(2): 265-76. [CrossRef] [PubMed] [Google Scholar]
  106. Jaffe LF. Calcium waves. Phil Trans R Soc B. 2008; 363: 1311-6. doi:10.1098/rstb.2007.2249 [CrossRef] [Google Scholar]
  107. Gizinger OA, Frantseva OV. Normalizing the effects of low-intensity laser radiation in relation to the functional and metabolic status of neutrophils in semen and kinetic features of sperm in patients with chlamydial infection. Ross J Immunol. 2016 2(1): 9-11. [Google Scholar]
  108. Gizinger OA, Letyayeva OI, Frantseva OV. Low-intensity laser therapy in correction of motor dysfunction of spermatozoa in patients with urogenital infections. Yuzh Ural Med Zhurn. 2014; 3: 35-41. [Google Scholar]
  109. Gizinger OA, Letyayeva OI, Frantseva OV, Zabirova MR. Application of low-intensity laser in reproductology. Vest Chel Obl Klin Boln. 2014; 4(27): 29-33. [Google Scholar]
  110. Gizinger OA, Frantseva OV, Zabirova MR. A method for increasing the functional-metabolic status of spermatozoa obtained from healthy human semen in vitro and in vivo. Vest Chel Obl Klin Boln. 2015; 1: 35-7. [Google Scholar]
  111. Goryunov SV. Principles of choosing laser radiation to affect sperm and studying the effects of this effect on human spermatozoa (experimental study). Proceedings of “Appl of Lasers in Biol and Med”. 1995: 120-1. [Google Scholar]
  112. Goryunov SV. Influence of low-energy laser radiation on human spermatozoa (experimental study) [Abstract of the thesis]. Moscow; 1996. [Google Scholar]
  113. Ban Frangez H, Frangez I, Verdenik I, Jansa V, Virant Klun I. Photobiomodulation with light-emitting diodes improves sperm motility in men with asthenozoospermia. Lasers Med Sci. 2015; 30(1): 235-40. doi: 10.1007/s10103-014-1653-x. [CrossRef] [Google Scholar]
  114. Firestone RS, Esfandiari N, Moskovtsev SI, Burstein E, Videna GT, Librach C, et al. The effects of low-level laser light exposure on sperm motion characteristics and DNA damage. J Androl. 2012; 33(3): 469-73. doi: 10.2164/jandrol.111.013458. [CrossRef] [Google Scholar]
  115. Karu TI. Lasers in infertility treatment: irradiation of oocytes and spermatozoa. Photomed Laser Surg. 2012; 30(5): 239-41. [CrossRef] [PubMed] [Google Scholar]
  116. Lenzi A, Claroni F, Gandini L, Lombardo F, Barbieri C, Lino A, et al. Laser radiation and motility patterns of human sperm. Arch Androl. 1989; 23(3): 229-34. [CrossRef] [Google Scholar]
  117. Saeed GhTh, Al-Kaisy AZ, Ali MKh. The effect of the low level laser irradiation on the human sperm motility. Al-Anbar J Vet Sci. 2014; 7(2): 6-10. [Google Scholar]
  118. Salama N, El-Sawy M. Light-emitting diode exposure enhances sperm motility in men with and without asthenospermia: preliminary results. Arch Ital Urol Androl. 2015; 87(1): 14-9. doi: 10.4081/aiua.2015.1.14. [CrossRef] [PubMed] [Google Scholar]
  119. Singer R, Sagiv M, Barnet M, Levinsky H, Segenreich E, Fuchs Y, et al. Low energy narrow band non-coherent infrared illumination of human semen and isolated sperm. Andrologia. 1991; 23(2): 181-4. [CrossRef] [PubMed] [Google Scholar]
  120. Preece D, Chow KW, Gomez-Godinez V, Gustafson K, Esener S, Ravida N, et al. Red light improves spermatozoa motility and does not induce oxidative DNA damage. Sci Rep. 2017; 7: 46480. doi: 10.1038/srep46480 [CrossRef] [PubMed] [Google Scholar]
  121. Vesich TL. Some features of rehabilitating action of laser emission on native and cryopreserved human spermatozoa. Probl Cryobiol. 1994; 4(1): 33-5. [Google Scholar]
  122. Vesich TL, Kramar MI. Study of the action of laser irradiation on the nataive and cryopreserved human spermatozoa. Probl Cryobiol. 1994; 2: 53-4. [Google Scholar]
  123. Grishchenko VI, Yurchenko GG, Vesich TL. Increase in the functional activity of native and cryopreserved spermatozoa using helium-neon laser red radiation. Besplodiye. Vspomog Reprod Tekhnol Kiyev. 1995: 78-81. [Google Scholar]
  124. Moskvin SV. Basics of laser therapy. Series “Effective laser therapy”. Moscow–Tver’: Triada; 2016, 1. [Google Scholar]
  125. Geniatulina MS, Korolev YuN, Nikulina LA. The ultrastructure of Leydig cells under the influence of drinking mineral water and electromagnetic radiation under the stress conditions in the rats. Voprosy Kurortol Fizioter Lech Fiz Kult. 2016; 5: 34-7. [CrossRef] [Google Scholar]
  126. Korolev YuN, Bobrovnitsky IP, Geniatulina MS, et al. The combined action of drinking mineral water and low-intensity electromagnetic radiation under the immobilization stress conditions (an experimental study). Voprosy Kurortol Fizioter Lech Fiz Kult. 2015; 6: 37-41. [CrossRef] [Google Scholar]
  127. Korolev YuN, Mikhailik LV, Geniatulina MS, Nikulina LA. The use of drinkable sulfate mineral water in combination with laser and magnetolaser irradiation for primary prophylaxis of postradiation problems (experimental study). Voprosy Kurortol Fizioter Lech Fiz Kult. 2010; 4:3-6. [Google Scholar]
  128. Korolev YuN, Kurilo LF, Geniatulina MS, Nikulina L. A., Makarova N. P. The radioprotective effect of laser radiation on the spermatogenesis of rats and their progeny. Probl Reprod. 2007; 1: 34-7. [Google Scholar]
  129. Makarova NP, Korolev UN, Kurilo LF, Shileyko L.V., Ostroumova T. V., Nikulina L. A., et al. Effect of low intensity laser radiation on testicular tissue during common ionizing irradiation. Androlog Gen Surg. 2005; 1: 23-5. [Google Scholar]
  130. Bereznitskaya AN, Mendel’son GI, Makarova IV. The influence of long-term low-power laser radiation on the generative function of male mice. Gigiyen Aspekt Ispol Lazer Izluch Narod Khoz. Moscow; 1982: 143-4. [Google Scholar]
  131. Gabel P, Harrison K, Sherrin D, Carroll J. Sperm motility enhancement with low level laser and led photobiomodulation. A dose response study. Abstracts from 7th International Congress of the World Association for Laser Therapy; 2008. Photomed Laser Surg. 2009; 27(1): 160. [Google Scholar]
  132. Stolyarov AV, Lisichenko HL, Grabina VA. The effect of exposure and wavelength on the efficiency of reproduction in the processes of laser sperm treatment. Proceedings of the XVIII International Scientific-Practical Conference “The use of lasers in medicine and biology.” Yalta; 2002: 64-5. [Google Scholar]
  133. Hasan P, Rijadi SA, Purnomo S, Kainama H. The possible application of low reactive-level laser therapy (LLLT) in the treatment of male infertility: a preliminary report. Laser Ther. 1989; 1(1): 49-50. [CrossRef] [Google Scholar]
  134. Gladkova AI. Laser therapy in andrology. In: Popov VD. Current aspects of laser therapy. Cherkassy: Vertikal’, izdatel’ Kandych S.G.; 2011: 448-71. [Google Scholar]
  135. Bondarenko VA, Gladkova AI. The efficiency of low-intensity laser therapy in male infertility of different genesis. Zdorov Muzh. 2004; 3(10): 226-9. [Google Scholar]
  136. Bondarenko VA, Burma TE, Korobov AM. The dynamics of the incremental function of the testicles under the influence of LILI in the treatment of excretory-toxic infertility in men. Proceedings of the IX Intern Conf “The use of lasers in med and bio.” Yalta-Kharkov, 1998: 126-7. [Google Scholar]
  137. Vasil’yev VS, Vasil’yeva LI, Lisichenko NL. Interference microscopy of native and irradiated sperm of humans and animals. Proceedings of the XIX Intern Conf “The use of lasers in med and biol.” Odessa, 2003: 55-6. [Google Scholar]
  138. Vesich TD, Kramar MI. The study of the effect of laser radiation on native and post-cryopreserved human spermatozoa. Probl Kriobiol. 1994; 2: 54-5. [Google Scholar]
  139. Gladkova AI. Experimental substantiation of the effectiveness of laser therapy in andrological practice. Proceedings of the XXth Intern Conf “The use of lasers in med and biol.” Yalta, 2003: 90-2. [Google Scholar]
  140. Gladkova AI. Additive effect of drug and laser therapy for infertility. Proceedings of the XXVI Intern Conf “The use of lasers in med and biol.” Yalta, 2006: 114-5. [Google Scholar]
  141. Gladkova AI, Bondarenko VA. Experimental-clinical justification of fertility regulation with the help of low-intensity laser irradiation. Proceedings of the XXV Intern Conf “The use of lasers in med and biol.” Lutsk, 2006: 79. [Google Scholar]
  142. Gladkova AI, Tarasenko NE. The Influence of low-intensity laser irradiation on the incremental function of the testes. Proceedings of the XXI Intern Conf “The use of lasers in med and biol.” Odessa, 2004: 76-7. [Google Scholar]
  143. Alexandrov VP, Korenkov DG, Nikolaeva EV. Advantages of the use of Androgin device for treatment of secretory infertility and chronic prostatitis. Urologiya. 2006; 3: 71-4. [Google Scholar]
  144. Al’-Shukri SKH, Tkachuk VN, Sokolov AB, Slesarevskaya MN. Application of low-energy laser irradiation in urological diseases. Actual probl laser med. Saint Petersburg, 2001: 174-9. [Google Scholar]
  145. Slesarevskaya MN. The effectiveness of low-intensity laser radiation in patients with chronic prostatitis. [Abstract of the thesis]. Saint Petersburg, 2004. [Google Scholar]
  146. Yantareva LI, Slesarevskaya MN, Sokolov AB, Kolcheva OV. Influence of low-intensity radiation of the green and infrared spectral range on the motility of spermatozoa in chronic prostatitis. Proceedings of Int. Conf. “Problems of laser medicine”. Moscow, 1997: 320-1. [Google Scholar]
  147. Yantareva LI, Slesarevskaya MN, Sokolov AB, Kolcheva OV. Influence of low-intensity irradiation of the green and infrared spectral range on the motility of spermatozoa in chronic prostatitis. Proceedings of the II Intern Sympos “Semicond solid-state lasers in med”. Saint Petersburg, 1998. [Google Scholar]
  148. Mazo EB, Siluyanov KA. Application of low-intensity laser radiation in the complex treatment of men with secretory infertility. Farmateka, 2008; 9: 44-7. [Google Scholar]
  149. Mazo EB, Siluyanov KA. The use of local low-intensity laser therapy in the complex treatment of men with secretory infertility. Androl Gen Surg. 2009; 2: 101-2. [Google Scholar]
  150. Mazo EB, Tirsi KA, Mufaged ML, Siluyanov KA. The experience in application of low-intensity laser irradiation in the treatment of patients with secretory infertility in varicocele. Laser Med. 2002; 6(4): 50-1. [Google Scholar]
  151. Siluyanov KA. Low-intensity laser irradiation in complex treatment of patients with secretory infertility. [Abstract of the thesis]. Moscow, 2007. [Google Scholar]
  152. Siluyanov KA. Application of low-intensity laser radiation in the complex treatment of men with secretory infertility. 2009. http://uroweb.ru/article/db-article-3670.html [Google Scholar]
  153. Asadov KhD. Male infertility and the possibilities of overcoming it with the help of in vitro fertilization in hot climate. [Abstract of the thesis]. Tashkent, 2009. [Google Scholar]
  154. Vaisov IA, Shodiyev KhK, Baybekov IM. The effectiveness of low-intensity laser irradiation (LILI) in the complex treatment of infertile men. Novost Dermatol Reprod Zdor. 2012; 1: 7-9. [Google Scholar]
  155. Kalinina SN. Inflammatory diseases of additional sex glands in men, caused by urogenital latent infection and complicated by infertility. [Abstract of the thesis]. Saint Petersburg, 2003. [Google Scholar]
  156. Apolikhin OI, Moskvin SV. Laser therapy for male infertility. Part 2.systematic review of clinical trials. Urologiia. 2017; 6: 164-71. doi: https://dx.doi.org/10.18565/urology.2017.6.164-171 [Google Scholar]
  157. Abunimekh BKh. Differential treatment of epididymitis and epididymorchitis. [Abstract of the thesis]. Makhachkala, 2006. [Google Scholar]
  158. Reznikov LL. Treatment of patients with acute epididymoorchitis with low-intensity laser radiation. [Abstract of the thesis]. Leningrad, 1990. [Google Scholar]
  159. Safarov ShA. Modern approaches to the treatment of acute epididymitis. [Abstract of the thesis]. Moscow, 2007. [Google Scholar]
  160. Shormanov IS, Vorchalov MM, Ryzhkov AI. Acute epididymitis: medical and social aspects. Modern possibilities of pathogenetic therapy. Eksper Clin Urol. 2012; 3: 71-8. [Google Scholar]
  161. Korenkov DG, Aleksandrov VP, Mikhajlichenko VV, Marusanov VE. Method for treating autoimmune sterility in men. Patent 2185211 RU, 20.07.2002. [Google Scholar]
  162. Yurshin VV. Complex treatment of chronic prostatitis using a lowenergy laser. [Abstract of the thesis]. Moscow, 1998. [Google Scholar]
  163. Yurshin VV. Magnetic laser therapy in the treatment of male infertility. Moscow: Izdatel’skaya gruppa «BDTS–Press». 2003; 2(3): 171-3. [Google Scholar]
  164. Yurshin VV. Excretory-inflammatory form of male infertility (pathogenesis, diagnosis, treatment). [Abstract of the thesis]. Moscow, 2006. [Google Scholar]
  165. Yurshin VV, Sergienko NF, Illarionov VE. Ethiopathogenetic validation of using magnetolaser therapy in combined treatment of male infertility. Urologiya. 2003; 2: 23-5. [Google Scholar]
  166. Ikhayev AB. Combined use of magnetolaser and LD-laser therapy of infertility in patients with chronic prostatitis. [Abstract of the thesis]. Pyatigorsk, 2013. [Google Scholar]
  167. Moskvin SV, Ivanchenko LP. Backgroundings for the technique of local laser negative pressure. Lazer Med. 2014; 18(3): 21-6. [Google Scholar]
  168. Moskvin SV, Ivanchenko LP. Chronobiological approach to the treatment of patients with erectile dysfunction using a combination of local negative pressure and laser illumination. Urologiya. 2014; 3: 48-53. [Google Scholar]
  169. Putilin VA. Endovascular laser and balneotherapy combined with laser acupuncture in complex treatment of infertility in patients with chronic prostatitis. [Abstract of the thesis]. Pyatigorsk, 2009. [Google Scholar]
  170. Tereshin AT, Putilin VA, Mashnin VV, Morozov FA. Lasero-therapy of fertile disturbances in patients with chronic prostatitis. J New Med Technol. 2007; 14(4): 208. [Google Scholar]
  171. Tereshin AT, Putilin VA, Mashnin VV, Morozov FA. Laserotherapy at disorders of fertility in the patients with chronic prostatitis. J New Med Technol. 2008; 15(4): 121. [Google Scholar]
  172. Agaev AA. The use of acu-and laser puncture in combination with balneo and peloid therapy in men with impaired fertility caused by nonspecific inflammatory diseases of the genital organs. [Thesis]. Pytigorsk,1998. [Google Scholar]
  173. Ikhayev AB, Teroshin AT. Laser therapy, acu-and laser puncture in correction of infertility in patients with chronic prostatitis. Proceedings of the VII Intern Congress PAAR. Sochi, 2012. [Google Scholar]
  174. Tereshin AT, Istoshin NG, Putilin VA, Merslikin NV. Combined use of the laserotherapy, acu-and laseropuncture in correction of infertility in patients with chronic prostatitis. J New Med Technol. 2008; 15(4): 158-60. [Google Scholar]
  175. Tereshin AT, Istoshin NG, Putilin VA, Mashnin VV., Balneo-, laserotherapy, acu-and laseropuncture in correction in infertility in patients with chronic prostatitis. J New Med Technol. 2009; 16(1): 74-7. [Google Scholar]
  176. New medical technology FS № 2008/234 from 07.11.2008. Combined use of endovascular laser therapy, acu-and laser puncture in correction of infertility in patients with chronic prostatitis / Pyatigorsk State Scientific Research Institute of Balneology. Moscow, 2008. [Google Scholar]
  177. Satybaldyev ShR, Satybaldyev ESh, Evdokimov VV. Rehabilitation reproductive function in patients in official infertile marriages. Androlog Gen Surg. 2013; 14(4): 69-72. [Google Scholar]
  178. Satibaldiev ShR, Satibaldiev ESh, Evdokimov VV. Treatment of the patients with chronic abacterial prostatitis and fertility disturbances. Exper Clin Urol. 2014; 4: 43-6. [Google Scholar]
  179. Moskvin SV, Borisova ON, Belyaeva EA. Intravenous laser blood fluoring. Klin Med Farmak. 2017; 3(1): 21-5. [Google Scholar]
  180. Slonimskiy BYu. Features of the blood supply to the penis in the patients with obesity and reproductive dysfunction at the use of the developed complex program and its individual components. J New Med Technol. eEdition. 2013; 1: 155. [Google Scholar]
  181. Slonimskiy BYu. Modern programs for the restoration of reproductive function in obese men. [Abstract of the thesis]. Moscow, 2013. [Google Scholar]
  182. Slonimskiy BYu, Kotenko KV, Schukin AI. Innovative technologies of vegetative correction in the treatment of patients with obesity and reproductive dysfunction. J New Med Technol. eEdition. 2013; 1: 156. [Google Scholar]
  183. Mufaged ML, Tirsi KA, Siluyanov KA, Novitskiy VYe. Application of low-intensity laser irradiation in the treatment of infertile patients with varicocele. Vest Ross Gos Univ. (special issue) 2004; 2(33): 17. [Google Scholar]
  184. Sheyko IP, Gorbunov YuA, Budevich AI, Yeliseykin DV. Method for improving the quality of sperm production in breeding boars. Patent 8413 BY, 30.09.2003. [Google Scholar]
  185. Chayka VK, Kvashenko VP, Ostapenko OI. Method for treating patients with pathology of spermatogenesis Patent 62075 UA, 15.12.2003. [Google Scholar]
  186. Gavrilov YuA, Kuz’michev LN, Leonov BV, Levchuk TN. Method for improving sperm quality in the cases of pathospermia applicable in artificial fertilization program. Patent 2205047 RU, 27.05.2003. [Google Scholar]
  187. Kalinina SN, Tiktinskiy OL, Aleksandrov VP, Sajdulloev L, Mishanin EA. Method for treating autoimmune male infertility cases. Patent 2294779 RU, 10.03.2007. [Google Scholar]
  188. Chekmarev VM, Kharchenko IV, Mashkov AE. Method of complex spermatogenesis stimulation. Patent 2406549 RU, 20.12.2010. [Google Scholar]
  189. Zagarskikh EYu, Kolesnikova LI, Dolgikh VV, Kolesnikov SI, Zagarskikh AYu, Kurashova NA, et al. Application of musk deer musk tincture and ultraviolet irradiation of blood for treatment of spermatogenic failure in men of reproductive age. Patent 2418581 RU, 20.05.2011. [Google Scholar]
  190. Shcherbatyuk TG, Novikova YaS, Chernov VV.Method of experimental stimulation of spermatogenesis. Patent 2481132 RU,10.05.2013. [Google Scholar]
  191. Gizinger OA, Dolgushin II, Frantseva OV, Kurenkov EL. Method of increasing functional-metabolic status of sperm cells obtained from semen of healthy individual in vitro under effect of lowintensity laser. Patent 2583949 RU, 10.05.2016. [Google Scholar]
  192. Avdoshin VP, Pershin KB, Krutov IV. Magnetic laser therapy for chronic prostatitis. Proceedings of the Plenum of the All-Russian Society of Urology. Perm’. 1994: 12-3. [Google Scholar]
  193. Moskvin SV, Kisselev SB. Laser therapy for joint and muscle pain. Moscow–Tver’: “Triada”. 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.