Open Access
Review
Issue
BioMedicine
Volume 8, Number 3, September 2018
Article Number 14
Number of page(s) 10
DOI https://doi.org/10.1051/bmdcn/2018080314
Published online 24 August 2018
  1. Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963; doi:10.1038/197452a0. [Google Scholar]
  2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science (80-). 1999; 284: 143–7. doi:10.1126/science.284.5411.143. [CrossRef] [PubMed] [Google Scholar]
  3. Bonnet, Nicolas; Ferrari SL. Exercise and the Skeleton: How it Works and What it Really Does. IBMS Bonekey. 2010; doi:10.1138/20100453. [Google Scholar]
  4. Dudley-Javoroski S, Shields RK. Muscle and bone plasticity after spinal cord injury: Review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev. 2008; doi:10.1682/ JRRD.2007.02.0031. [Google Scholar]
  5. Delaine-Smith RM, Reilly GC. Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J. 2012; 2(3): 169–80. [PubMed] [Google Scholar]
  6. Liedert A, Claes L, Ignatius A. Signal transduction pathways involved in mechanotransduction in osteoblastic and mesenchymal stem cells. Mechanosensitivity in Cells and Tissues. 2008; doi:10.1007/978-1-4020-6426-5_11. [Google Scholar]
  7. Kearney EM, Farrell E, Prendergast PJ, Campbell VA. Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Ann Biomed Eng. 2010; 38(5): 1767–79. doi:10.1007/s10439-010-9979-4. [CrossRef] [PubMed] [Google Scholar]
  8. Morris HL, Reed CI, Haycock JW, Reilly GC. Mechanisms of fluidflow-induced matrix production in bone tissue engineering. In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2010; doi:10.1243/09544119JEIM751. [Google Scholar]
  9. Reilly GC, Haut TR, Yellowley CE, Donahue HJ, Jacobs CR. Fluid flow induced PGE 2 release by bone cells is reduced by glycocalyx degradation whereas calcium signals are not. Biorheology. 2003. [Google Scholar]
  10. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci. 2007; doi:10.1073/pnas.0700636104. [Google Scholar]
  11. Kurpinski KT, Li S. Mechanical Stimulation of Stem Cells Using Cyclic Uniaxial Strain. J Vis Exp JoVE. 2007. [Google Scholar]
  12. Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng. 2004; doi:10.1002/bit.20250. [Google Scholar]
  13. O'Cearbhaill ED, Punchard MA, Murphy M, Barry FP, McHugh PE, Barron V. Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials. 2008. doi:10.1016/j.biomaterials.2007.11.042. [Google Scholar]
  14. Kurpinski K, Park J, Thakar RG, Li S. Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. MolCell Biomech. 2006. [Google Scholar]
  15. Khani MM, Tafazzoli-Shadpour M, Goli-Malekabadi Z, Haghighipour N. Mechanical characterization of human mesenchymal stem cells subjected to cyclic uniaxial strain and TGF-ß1. J Mech Behav Biomed Mater. 2015; 43: 18–25. doi:10.1016/j.jmbbm.2014.12.013. [CrossRef] [Google Scholar]
  16. Rashidi N, Tafazzoli-Shadpour M, Haghighipour N, Khani M-M. Morphology and contractile gene expression of adipose-derived mesenchymal stem cells in response to short-term cyclic uniaxial strain and TGF-β1. Biomed Eng / Biomed Tech. 2017; doi:10.1515/ bmt-2016-0228. [Google Scholar]
  17. Zhang L, Kahn CJF, Chen HQ, Tran N, Wang X. Effect of uniaxial stretching on rat bone mesenchymal stem cell: Orientation and expressions of collagen types I and III and tenascin-C. Cell Biol Int. 2008; doi:10.1016/j.cellbi.2007.12.018. [Google Scholar]
  18. Bono N, Pezzoli D, Levesque L, Loy C, Candiani G, Fiore GB, et al. Unraveling the role of mechanical stimulation on smooth muscle cells: A comparative study between 2D and 3D models. Biotechnol Bioeng. 2016;113: 2254–63. doi:10.1002/bit.25979. [CrossRef] [PubMed] [Google Scholar]
  19. Parandakh A, Tafazzoli-Shadpour M, Khani MM. Stepwise morphological changes and cytoskeletal reorganization of human mesenchymal stem cells treated by short-time cyclic uniaxial stretch. Vitr Cell Dev Biol-Anim. 2017; 53(6): 547–53. doi:10.1007/s11626-017-0131-8. [CrossRef] [Google Scholar]
  20. Morita Y, Watanabe S, Ju Y, Yamamoto S. In Vitro experimental study for the determination of cellular axial strain threshold and preferential axial strain from cell orientation behavior in a non-uniform deformation field. Cell Biochem Biophys. 2013; 67(3): 1249–59. doi:10.1007/s12013-013-9643-3. [CrossRef] [PubMed] [Google Scholar]
  21. Song G, Ju Y, Shen X, Luo Q, Shi Y, Qin J. Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells. Colloids Surfaces B Biointerfaces. 2007; 58: 271–7. doi:10.1016/j.colsurfb.2007.04.001. [CrossRef] [Google Scholar]
  22. Song G, Ju Y, Soyama H, Ohashi T, Sato M. Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells. Mol Cell Biomech. 2007; 4(4): 201–210. [Google Scholar]
  23. Song G, Yuan L, Luo Q, Shi Y, Yang L, Ju Y. ERK1/2 mediates mechanical stretch-induced proliferation of bone marrowderived mesenchymal stem cells. In: IFMBE Proceedings. 2010. doi:10.1007/978-3-642-14515-5_286. [Google Scholar]
  24. Ghazanfari S, Tafazzoli-Shadpour M, Shokrgozar MA. Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem Biophys Res Commun. 2009; 388(3): 601–5. doi:10.1016/j.bbrc.2009.08.072. [CrossRef] [Google Scholar]
  25. Kobayashi N, Yasu T, Ueba H, et al. Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Exp Hematol. 2004; 32(12): 1238–45. doi:10.1016/j.exphem.2004.08.011. [CrossRef] [PubMed] [Google Scholar]
  26. Haghighipour N, Heidarian S, Shokrgozar MA, Amirizadeh N. Differential effects of cyclic uniaxial stretch on human mesenchymal stem cell into skeletal muscle cell. Cell Biol Int. 2012; 36(7): 669–75. doi:10.1042/CBI20110400. [CrossRef] [PubMed] [Google Scholar]
  27. Yan Huang, Lisha Zheng, Xianghui Gong, Xiaoling Jia, Wei Song, Meili Liu, et al. Effect of cyclic strain on cardiomyogenic differentiation of rat bone marrow derived mesenchymal stem cells. PLoS One. 2012. doi:10.1371/journal.pone.0034960. [Google Scholar]
  28. Qi MC, Hu J, Zou SJ, Chen HQ, Zhou HX, Han LC. Mechanical strain induces osteogenic differentiation: Cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells. Int J Oral Maxillofac Surg. 2008; 37(5): 453–8. 2008. doi:10.1016/j.ijom.2007.12.008. [CrossRef] [PubMed] [Google Scholar]
  29. Qi M, Zou S, Han L, Zhou H, Hu J. Expression of bone-related genes in bone marrow MSCs after cyclic mechanical strain: implications for distraction osteogenesis. Int J Oral Sci. 2009; 1(3): 143–50. doi:10.4248/IJOS.09021. [CrossRef] [PubMed] [Google Scholar]
  30. Zhang P, Wu Y, Jiang Z, Jiang L, Fang B. Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling. Int J Mol Med. 2012; 29(6): 1083–9. doi:10.3892/ijmm.2012.934. [CrossRef] [PubMed] [Google Scholar]
  31. Y. Wu, P. Zhang, Q. Dai, R. Fu, X. Yang, B. Fang, et al. Osteoclastogenesis accompanying early osteoblastic differentiation of BMSCs promoted by mechanical stretch. Biomed reports. 2013; 1(3): 474–8. doi:10.3892/br.2013.84. [CrossRef] [Google Scholar]
  32. Haasper C, Jagodzinski M, Drescher M, Meller R, Wehmeier M, Krettek C, et al. Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Exp Toxicol Pathol. 2008. doi:10.1016/j.etp.2007.11.013. [Google Scholar]
  33. Xiao W, Zhang D, Fan C, Yu B. Intermittent Stretching and Osteogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells via the p38MAPK-Osterix Signaling Pathway. Cell Physiol Biochem. 2015; 36: 1015–25. doi:10.1159/000430275. [CrossRef] [PubMed] [Google Scholar]
  34. Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng. 2006; 12(12): 3459–65. doi:10.1089/ten.2006.12.3459. [CrossRef] [Google Scholar]
  35. Yang X, Gong P, Lin Y, Zhang L, Li X, Yuan Q, et al. Cyclic tensile stretch modulates osteogenic differentiation of adipose-derived stem cells via the BMP-2 pathway. Arch Med Sci. 2010; 6(2): 152–9. doi:10.5114/aoms.2010.13886. [CrossRef] [PubMed] [Google Scholar]
  36. Hata M, Naruse K, Ozawa S, Kobayashi Y, Nakamura N, Kojima N, et al. Mechanical stretch increases the proliferation while inhibiting the osteogenic differentiation in dental pulp stem cells. Tissue Eng Part A. 2013; 19(5-6): 625–33. doi:10.1089/ten.tea.2012.0099. [CrossRef] [PubMed] [Google Scholar]
  37. Cai X, Zhang Y, Yang X, Grottkau BE, Lin Y. Uniaxial cyclic tensile stretch inhibits osteogenic and odontogenic differentiation of human dental pulp stem cells. J Tissue Eng Regen Med. 2011. doi:10.1002/term.319. [Google Scholar]
  38. Yang X, Cai X, Wang J, Tang H, Yuan Q, Gong P, et al. Mechanical stretch inhibits adipogenesis and stimulates osteogenesis of adipose stem cells. Cell Prolif. 2012;45(2):158–166. doi:10.1111/j.1365-2184.2011.00802.x. [CrossRef] [PubMed] [Google Scholar]
  39. Akimoto T, Ushida T, Miyaki S, Akaogi H, Tsuchiya K, Yan Z, et al. Mechanical stretch inhibits myoblast-to-adipocyte differentiation through Wnt signaling. Biochem Biophys Res Commun. 2005; 329(1): 381–5. doi:10.1016/j.bbrc.2005.01.136. [CrossRef] [Google Scholar]
  40. Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable ??-catenin signal. Endocrinology. 2008; 149(12): 6065–75. doi:10.1210/en.2008-0687. [CrossRef] [PubMed] [Google Scholar]
  41. Lee JS, Ha L, Park JH, Lim JY. Mechanical stretch suppresses BMP4 induction of stem cell adipogenesis via upregulating ERK but not through downregulating Smad or p38. Biochem Biophys Res Commun. 2012; 418(2): 278–83. doi:10.1016/j.bbrc.2012.01.010. [CrossRef] [Google Scholar]
  42. Li R, Liang L, Dou Y, Huang Z, Mo H, Wang Y, et al. Mechanical stretch inhibits mesenchymal stem cell adipogenic differentiation through TGFβ1/Smad2 signaling. J Biomech. 2015; 48(13): 3665–71. doi:10.1016/j.jbiomech.2015.08.013. [PubMed] [Google Scholar]
  43. Chen YJ, Huang CH, Lee IC, Lee YT, Chen MH, Young TH. Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res. 2008; 49(1): 7–14. doi:10.1080/03008200701818561. [CrossRef] [PubMed] [Google Scholar]
  44. Morita Y, Watanabe S, Ju Y, Xu B. Determination of optimal cyclic Uniaxial stretches for stem cell-to-tenocyte differentiation under a wide range of mechanical stretch conditions by evaluating gene expression and protein synthesis levels. Acta Bioeng Biomech. 2013; 15(3): 71–9. doi:10.5277/abb130309. [PubMed] [Google Scholar]
  45. Kuo CK, Tuan RS. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A. 2008; 14(10): 1615–27. doi:10.1089/ten.tea.2006.0415. [CrossRef] [PubMed] [Google Scholar]
  46. Xu B, Song G, Ju Y, Li X, Song Y, Watanabe S. RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J Cell Physiol. 2012; 227(6): 2722–9. doi:10.1002/jcp.23016. [CrossRef] [Google Scholar]
  47. Nam HY, Raghavendran HRB, Pingguan-Murphy B, Abbas AA, Merican AM, Kamarul T. Fate of tenogenic differentiation potential of human bone marrow stromal cells by uniaxial stretching affected by stretch-activated calcium channel agonist gadolinium. PLoS One. 2017. doi:10.1371/journal.pone.0178117. [Google Scholar]
  48. Zhu Z, Gan X, Fan H, Yu H. Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation. Biochem Biophys Res Commun. 2015; 468(4): 601–5. doi:10.1016/j.bbrc.2015.10.157. [CrossRef] [Google Scholar]
  49. Kearney EM, Prendergast PJ, Campbell VA. Mechanisms of strainmediated mesenchymal stem cell apoptosis. J Biomech Eng. 2008; 130(6): 061004. doi:10.1115/1.2979870. [CrossRef] [PubMed] [Google Scholar]
  50. Li R, Chen B, Wang G, Yu B, Ren G, Ni G. Effects of mechanical strain on oxygen free radical system in bone marrow mesenchymal stem cells from children. Injury. 2011; 42(8): 753–7. doi:10.1016/j.injury.2010.11.015. [CrossRef] [PubMed] [Google Scholar]
  51. Kim T-J, Sun J, Lu S, Qi Y-X, Wang Y. Prolonged Mechanical Stretch Initiates Intracellular Calcium Oscillations in Human Mesenchymal Stem Cells. PLoS One. 2014. doi:10.1371/journal. pone.0109378. [Google Scholar]
  52. Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J Biomech. 2003; 36(8): 1087–96. doi:10.1016/S0021-9290(03)00110-6. [CrossRef] [PubMed] [Google Scholar]
  53. Ku CH, Johnson PH, Batten P, Sarathchandra P, Chambers RC, Taylor PM, et al. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res. 2006; 71(3): 548–56. doi:10.1016/j.cardiores.2006.03.022. [CrossRef] [PubMed] [Google Scholar]
  54. Aragona M, Panciera T, Manfrin A, et al. Biophysical Regulation of Chromatin Architecture Instills a Mechanical Memory in Mesenchymal Stem Cells. FEBS Lett. 2015; 5: 16895. doi:10.1038/srep16895. [Google Scholar]
  55. Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL. Mechanical Stimulation Increases Collagen Type I and Collagen Type III Gene Expression of Stem Cell-Collagen Sponge Constructs for Patellar Tendon Repair. Tissue Eng. 2007; 13(6): 1219–26. doi:10.1089/ten.2006.0339. [CrossRef] [Google Scholar]
  56. Huang AH, Farrell MJ, Kim M, Mauck RL. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogels. Eur Cells Mater. 2010; 19: 72–85. doi:10.22203/eCM.v019a08. [CrossRef] [Google Scholar]
  57. Cardwell RD, Kluge JA, Thayer PS, Guelcher SA, Dahlgren LA, Kaplan DL, et al. Static and Cyclic Mechanical Loading of Mesenchymal Stem Cells on Elastomeric, Electrospun Polyurethane Meshes. J Biomech Eng. 2015; 137(7). doi:10.1115/1.4030404. [CrossRef] [Google Scholar]
  58. Mengatto CM, Mussano F, Honda Y, Colwell CS, Nishimura I. Circadian rhythm and cartilage extracellular matrix genes in osseointegration: A genome-wide screening of implant failure by vitamin D deficiency. PLoS One. 2011. doi:10.1371/journal.pone.0015848. [Google Scholar]
  59. Pittendrigh Cs. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol. 1960; 25: 159–84. doi:10.1101/SQB.1960.025.01.015. [CrossRef] [PubMed] [Google Scholar]
  60. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002; 418: 935–41. doi:10.1038/nature00965. [CrossRef] [PubMed] [Google Scholar]
  61. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, et al. Positional Cloning of the Mouse Circadian ClockGene. Cell. 1997; 89: 641–53. [CrossRef] [PubMed] [Google Scholar]
  62. Gekakis NI, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, et al. Role of the CLOCK Protein in the Mammalian Circadian Mechanism. Science (80-). 1998; 280: 1564–9. doi:10.1126/science.280.5369.1564. [CrossRef] [Google Scholar]
  63. Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999; 98(2):193–205. doi:10.1016/S0092-8674(00)81014-4. [CrossRef] [PubMed] [Google Scholar]
  64. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, et al. Interacting molecular loops in the mammalian circadian clock. Science (80-). 2000; 288: 1013–9. doi:10.1126/science.288.5468.1013. [CrossRef] [Google Scholar]
  65. Guillaumond F, Dardente H, Giguère V, Cermakian N. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms. 2005; 20(5): 391–403. doi:10.1177/0748730405277232. [CrossRef] [PubMed] [Google Scholar]
  66. Hassan N, McCarville K, Morinaga K, et al. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells. PLoS One. 2017. doi:10.1371/journal.pone.0183359. [Google Scholar]
  67. Simoni A, Wolfgang W, Topping MP, Kavlie RG, Stanewsky R, Albert JT. A Mechanosensory Pathway to the Drosophila Circadian Clock. Science (80-). 2014; 343: 525–8. doi:10.1126/science.1245710. [CrossRef] [Google Scholar]
  68. Rogers EH, Fawcett SA, Pekovic-Vaughan V, Hunt JA. Comparing Circadian Dynamics in Primary Derived Stem Cells from Different Sources of Human Adult Tissue. Stem Cell Int. 2017; 2017: 2057168. doi:10.1155/2017/2057168. [Google Scholar]
  69. Yang N, Williams J, Pekovic-Vaughan V, Wang P, Olabi S, McConnell J, et al. Cellular mechano-environment regulates the mammary circadian clock. Nat Commun. 2017; 8: 14287. doi:10.1038/ncomms14287. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.