Open Access
Issue
BioMedicine
Volume 8, Number 3, September 2018
Article Number 15
Number of page(s) 10
DOI https://doi.org/10.1051/bmdcn/2018080315
Published online 24 August 2018
  1. Sergentanis TN, Psaltopoulou T, Ntanasis-Stathopoulos I, Liaskas A, Tzanninis IG, Dimopoulos MA. Consumption of fruits, vegetables, and risk of hematological malignancies: a systematic review and meta-analysis of prospective studies. Leuk Lymphoma. 2018; 59: 434–47. [CrossRef] [PubMed] [Google Scholar]
  2. Ampofo E, Schmitt BM, Menger MM, Laschke MW. Targeting the microcirculation by indole-3-carbinol: Effects on angiogenesis, thrombosis and inflammation. Mini Rev Med Chem. 2018. [Google Scholar]
  3. Sehrawat A, Roy R, Pore SK, Hahm ER, Samanta SK, Singh KB, et al. Mitochondrial dysfunction in cancer chemoprevention by phytochemicals from dietary and medicinal plants. Semin Cancer Biol. 2017; 47: 147–53. [CrossRef] [PubMed] [Google Scholar]
  4. Milelli A, Fimognari C, Ticchi N, Neviani P, Minarini A, Tumiatti V. Isothiocyanate synthetic analogs: biological activities, structureactivity relationships and synthetic strategies. Mini Rev Med Chem. 2014; 14: 963–77. [CrossRef] [PubMed] [Google Scholar]
  5. Conaway CC, Yang YM, Chung FL. Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr Drug Metab. 2002; 3: 233–55. [CrossRef] [PubMed] [Google Scholar]
  6. Bianchini F, Vainio H. Isothiocyanates in cancer prevention. Drug Metab Rev. 2004; 36: 655–67. [CrossRef] [PubMed] [Google Scholar]
  7. Xue L, Zhang WJ, Fan QX, Wang LX. Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells. Oncol Lett. 2018; 15: 1869–73. [PubMed] [Google Scholar]
  8. Zhu X, Zhou M, Liu G, Huang X, He W, Gou X, et al. Autophagy activated by the c-Jun N-terminal kinase-mediated pathway protects human prostate cancer PC3 cells from celecoxib-induced apoptosis. Exp Ther Med. 2017; 13: 2348–54. [CrossRef] [PubMed] [Google Scholar]
  9. Lin JF, Tsai TF, Yang SC, Lin YC, Chen HE, Chou KY, et al. Benzyl isothiocyanate induces reactive oxygen species-initiated autophagy and apoptosis in human prostate cancer cells. Oncotarget. 2017; 8: 20220–34. [PubMed] [Google Scholar]
  10. Huang SH, Wu LW, Huang AC, Yu CC, Lien JC, Huang YP, et al. Benzyl isothiocyanate (BITC) induces G2/M phase arrest and apoptosis in human melanoma A375.S2 cells through reactive oxygen species (ROS) and both mitochondria-dependent and death receptormediated multiple signaling pathways. J Agric Food Chem. 2012; 60: 665–75. [CrossRef] [PubMed] [Google Scholar]
  11. Wu CL, Huang AC, Yang JS, Liao CL, Lu HF, Chou ST, et al. Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3, mitochondria dysfunction and nitric oxide (NO) in human osteogenic sarcoma U-2 OS cells. J Orthop Res. 2011; 29: 1199–209. [CrossRef] [PubMed] [Google Scholar]
  12. Ho CC, Lai KC, Hsu SC, Kuo CL, Ma CY, Lin ML, et al. Benzyl isothiocyanate (BITC) inhibits migration and invasion of human gastric cancer AGS cells via suppressing ERK signal pathways. Hum Exp Toxicol. 2011; 30: 296–306. [CrossRef] [PubMed] [Google Scholar]
  13. Lai KC, Huang AC, Hsu SC, Kuo CL, Yang JS, Wu SH, et al. Benzyl isothiocyanate (BITC) inhibits migration and invasion of human colon cancer HT29 cells by inhibiting matrix metalloproteinase-2/-9 and urokinase plasminogen (uPA) through PKC and MAPK signaling pathway. J Agric Food Chem. 2010; 58: 2935–42. [CrossRef] [PubMed] [Google Scholar]
  14. Tsou MF, Peng CT, Shih MC, Yang JS, Lu CC, Chiang JH, et al. Benzyl isothiocyanate inhibits murine WEHI-3 leukemia cells in vitro and promotes phagocytosis in BALB/c mice in vivo. Leuk Res. 2009; 33: 1505–11. [CrossRef] [PubMed] [Google Scholar]
  15. Lai KC, Lu CC, Tang YJ, Chiang JH, Kuo DH, Chen FA, et al. Allyl isothiocyanate inhibits cell metastasis through suppression of the MAPK pathways in epidermal growth factorstimulated HT29 human colorectal adenocarcinoma cells. Oncol Rep. 2014; 31: 189–96. [CrossRef] [PubMed] [Google Scholar]
  16. Tsai SC, Huang WW, Huang WC, Lu CC, Chiang JH, Peng SF, et al. ERK-modulated intrinsic signaling and G(2)/M phase arrest contribute to the induction of apoptotic death by allyl isothiocyanate in MDA-MB-468 human breast adenocarcinoma cells. Int J Oncol. 2012; 41: 2065–72. [CrossRef] [PubMed] [Google Scholar]
  17. Chen NG, Chen KT, Lu CC, Lan YH, Lai CH, Chung YT, et al. Allyl isothiocyanate triggers G2/M phase arrest and apoptosis in human brain malignant glioma GBM 8401 cells through a mitochondriadependent pathway. Oncol Rep. 2010; 24: 449–55. [PubMed] [Google Scholar]
  18. Huang SH, Hsu MH, Hsu SC, Yang JS, Huang WW, Huang AC, et al. Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways. Hum Exp Toxicol. 2014; 33: 270–83. [CrossRef] [PubMed] [Google Scholar]
  19. Chen HJ, Lin CM, Lee CY, Shih NC, Amagaya S, Lin YC, et al. Phenethyl isothiocyanate suppresses EGF-stimulated SAS human oral squamous carcinoma cell invasion by targeting EGF receptor signaling. Int J Oncol. 2013; 43: 629–37. [CrossRef] [PubMed] [Google Scholar]
  20. Chen PY, Lin KC, Lin JP, Tang NY, Yang JS, Lu KW, et al. Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G(0)/G(1) Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death. Evid Based Complement Alternat Med. 2012; 2012: 718320. [PubMed] [Google Scholar]
  21. Tsou MF, Tien N, Lu CC, Chiang JH, Yang JS, Lin JP, et al. Phenethyl isothiocyanate promotes immune responses in normal BALB/c mice, inhibits murine leukemia WEHI-3 cells, and stimulates immunomodulations in vivo. Environ Toxicol. 2013; 28: 127–36. [CrossRef] [PubMed] [Google Scholar]
  22. Tang NY, Huang YT, Yu CS, Ko YC, Wu SH, Ji BC, et al. Phenethyl isothiocyanate (PEITC) promotes G2/M phase arrest via p53 expression and induces apoptosis through caspase- and mitochondriadependent signaling pathways in human prostate cancer DU 145 cells. Anticancer Res. 2011; 31: 1691–702. [PubMed] [Google Scholar]
  23. Lai KC, Hsu SC, Kuo CL, Ip SW, Yang JS, Hsu YM, et al. Phenethyl isothiocyanate inhibited tumor migration and invasion via suppressing multiple signal transduction pathways in human colon cancer HT29 cells. J Agric Food Chem. 2010; 58: 11148–55. [CrossRef] [PubMed] [Google Scholar]
  24. Yang MD, Lai KC, Lai TY, Hsu SC, Kuo CL, Yu CS, et al. Phenethyl isothiocyanate inhibits migration and invasion of human gastric cancer AGS cells through suppressing MAPK and NF-kappaB signal pathways. Anticancer Res. 2010; 30: 2135–43. [PubMed] [Google Scholar]
  25. Yang JS, Wang CM, Su CH, Ho HC, Chang CH, Chou CH, et al. Eudesmin attenuates Helicobacter pylori-induced epithelial autophagy and apoptosis and leads to eradication of H. pylori infection. Exp Ther Med. 2018; 15: 2388–96. [PubMed] [Google Scholar]
  26. Chin HK, Horng CT, Liu YS, Lu CC, Su CY, Chen PS, et al. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells. Oncol Rep. 2018; 39: 2351–57. [PubMed] [Google Scholar]
  27. Chang HP, Lu CC, Chiang JH, Tsai FJ, Juan YN, Tsao JW, et al. Pterostilbene modulates the suppression of multidrug resistance protein 1 and triggers autophagic and apoptotic mechanisms in cisplatin-resistant human oral cancer CAR cells via AKT signaling. Int J Oncol. 2018. [Google Scholar]
  28. Yang JS, Lu CC, Kuo SC, Hsu YM, Tsai SC, Chen SY, et al. Autophagy and its link to type II diabetes mellitus. Biomedicine (Taipei). 2017; 7: 8. [CrossRef] [PubMed] [Google Scholar]
  29. Vervloessem T, Kerkhofs M, La Rovere RM, Sneyers F, Parys JB, Bultynck G. Bcl-2 inhibitors as anti-cancer therapeutics: The impact of and on calcium signaling. Cell Calcium. 2018; 70: 102–16. [CrossRef] [PubMed] [Google Scholar]
  30. Wu H, Medeiros LJ, Young KH. Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev. 2018; 32: 8–28. [CrossRef] [PubMed] [Google Scholar]
  31. McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol. 2018. [Google Scholar]
  32. Pfeffer CM, Singh ATK. Apoptosis: A Target for Anticancer Therapy. Int J Mol Sci. 2018; 19. [Google Scholar]
  33. Guegan JP, Legembre P. Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J. 2018; 285: 809–27. [CrossRef] [PubMed] [Google Scholar]
  34. Chiang JH, Yang JS, Lu CC, Hour MJ, Chang SJ, Lee TH, et al. Newly synthesized quinazolinone HMJ-38 suppresses angiogenetic responses and triggers human umbilical vein endothelial cell apoptosis through p53-modulated Fas/death receptor signaling. Toxicol Appl Pharmacol. 2013; 269: 150–62. [CrossRef] [PubMed] [Google Scholar]
  35. Lu HF, Lai KC, Hsu SC, Lin HJ, Yang MD, Chen YL, et al. Curcumin induces apoptosis through FAS and FADD, in caspase-3-dependent and -independent pathways in the N18 mouse-rat hybrid retina ganglion cells. Oncol Rep. 2009; 22: 97–104. [PubMed] [Google Scholar]
  36. Gosepath EM, Eckstein N, Hamacher A, Servan K, von Jonquieres G, Lage H, et al. Acquired cisplatin resistance in the head-neck cancer cell line Cal27 is associated with decreased DKK1 expression and can partially be reversed by overexpression of DKK1. Int J Cancer. 2008; 123: 2013–9. [CrossRef] [PubMed] [Google Scholar]
  37. Chang PY, Peng SF, Lee CY, Lu CC, Tsai SC, Shieh TM, et al. Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol. 2013; 43: 1141–50. [CrossRef] [PubMed] [Google Scholar]
  38. Lee MR, Lin C, Lu CC, Kuo SC, Tsao JW, Juan YN, et al. YC-1 induces G0/G1 phase arrest and mitochondria-dependent apoptosis in cisplatin-resistant human oral cancer CAR cells. Biomedicine (Taipei) 2017; 7: 12. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  39. Lu CC, Yang JS, Chiang JH, Hour MJ, Lin KL, Lee TH, et al. Cell death caused by quinazolinone HMJ-38 challenge in oral carcinoma CAL 27 cells: dissections of endoplasmic reticulum stress, mitochondrial dysfunction and tumor xenografts. Biochim Biophys Acta. 2014; 1840: 2310–20. [CrossRef] [PubMed] [Google Scholar]
  40. Gelles JD, Chipuk JE. Robust high-throughput kinetic analysis of apoptosis with real-time high-content live-cell imaging. Cell Death Dis. 2016; 7: e2493. [CrossRef] [PubMed] [Google Scholar]
  41. Lu CC, Yang JS, Chiang JH, Hour MJ, Lin KL, Lin JJ, et al. Novel quinazolinone MJ-29 triggers endoplasmic reticulum stress and intrinsic apoptosis in murine leukemia WEHI-3 cells and inhibits leukemic mice. PLoS One. 2012; 7: e36831. [PubMed] [Google Scholar]
  42. Ma YS, Weng SW, Lin MW, Lu CC, Chiang JH, Yang JS, et al. Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem Toxicol. 2012; 50: 1271–8. [CrossRef] [PubMed] [Google Scholar]
  43. Wu SH, Hang LW, Yang JS, Chen HY, Lin HY, Chiang JH, et al. Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade- and mitochondria-dependent pathways. Anticancer Res. 2010; 30: 2125–33. [PubMed] [Google Scholar]
  44. Martin SL, Royston KJ, Tollefsbol TO. The Role of Non-coding RNAs and Isothiocyanates in Cancer. Mol Nutr Food Res. 2018. [Google Scholar]
  45. Palliyaguru DL, Yuan JM, Kensler TW, Fahey JW. Isothiocyanates: Translating the Power of Plants to People. Mol Nutr Food Res. 2018; e1700965. [CrossRef] [PubMed] [Google Scholar]
  46. Thornalley PJ. Isothiocyanates: mechanism of cancer chemopreventive action. Anticancer Drugs. 2002; 13: 331–8. [CrossRef] [PubMed] [Google Scholar]
  47. Kumar G, Tuli HS, Mittal S, Shandilya JK, Tiwari A, Sandhu SS. Isothiocyanates: a class of bioactive metabolites with chemopreven tive potential. Tumour Biol. 2015; 36: 4005–16. [CrossRef] [PubMed] [Google Scholar]
  48. Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008; 269: 291–304. [CrossRef] [Google Scholar]
  49. Fofaria NM, Ranjan A, Kim SH, Srivastava SK. Mechanisms of the Anticancer Effects of Isothiocyanates. Enzymes. 2015; 37: 111–37. [CrossRef] [Google Scholar]
  50. Gupta P, Kim B, Kim SH, Srivastava SK. Molecular targets of isothiocyanates in cancer: recent advances. Mol Nutr Food Res. 2014; 58: 1685–707. [CrossRef] [PubMed] [Google Scholar]
  51. Sehrawat A, Croix CS, Baty CJ, Watkins S, Tailor D, Singh RP, et al. Inhibition of mitochondrial fusion is an early and critical event in breast cancer cell apoptosis by dietary chemopreventative benzyl isothiocyanate. Mitochondrion. 2016; 30: 67–77. [CrossRef] [PubMed] [Google Scholar]
  52. Xie B, Nagalingam A, Kuppusamy P, Muniraj N, Langford P, Gyorffy B, et al. Benzyl Isothiocyanate potentiates p53 signaling and antitumor effects against breast cancer through activation of p53-LKB1 and p73-LKB1 axes. Sci Rep. 2017; 7: 40070. [CrossRef] [PubMed] [Google Scholar]
  53. Kim SH, Sehrawat A, Singh SV. Dietary chemopreventative benzyl isothiocyanate inhibits breast cancer stem cells in vitro and in vivo. Cancer Prev Res. (Phila) 2013; 6: 782–90. [CrossRef] [PubMed] [Google Scholar]
  54. Liu X, Takano C, Shimizu T, Yokobe S, Abe-Kanoh N, Zhu B, et al. Inhibition of phosphatidylinositide 3-kinase ameliorates antiproliferation by benzyl isothiocyanate in human colon cancer cells. Biochem Biophys Res Commun. 2017; 491: 209–16. [CrossRef] [Google Scholar]
  55. Liu BN, Yan HQ, Wu X, Pan ZH, Zhu Y, Meng ZW, et al. Apoptosis induced by benzyl isothiocyanate in gefitinib-resistant lung cancer cells is associated with Akt/MAPK pathways and generation of reactive oxygen species. Cell Biochem Biophys. 2013; 66: 81–92. [CrossRef] [PubMed] [Google Scholar]
  56. Zhu Y, Zhuang JX, Wang Q, Zhang HY, Yang P. Inhibitory effect of benzyl isothiocyanate on proliferation in vitro of human glioma cells. Asian Pac J Cancer Prev. 2013; 14: 2607–10. [CrossRef] [PubMed] [Google Scholar]
  57. Zhu M, Li W, Dong X, Chen Y, Lu Y, Lin B, et al. Benzyl-isothiocyanate Induces Apoptosis and Inhibits Migration and Invasion of Hepatocellular Carcinoma Cells in vitro. J Cancer. 2017; 8: 240–48. [CrossRef] [PubMed] [Google Scholar]
  58. Zhang QC, Pan ZH, Liu BN, Meng ZW, Wu X, Zhou QH, et al. Benzyl isothiocyanate induces protective autophagy in human lung cancer cells through an endoplasmic reticulum stress-mediated mechanism. Acta Pharmacol Sin. 2017; 38: 539–50. [CrossRef] [PubMed] [Google Scholar]
  59. Ni WY, Hsiao YP, Hsu SC, Hsueh SC, Chang CH, Ji BC, et al. Oral administration of benzyl-isothiocyanate inhibits in vivo growth of subcutaneous xenograft tumors of human malignant melanoma A375.S2 cells. In Vivo. 2013; 27: 623–6. [PubMed] [Google Scholar]
  60. Mantso T, Sfakianos AP, Atkinson A, Anestopoulos I, Mitsiogianni M, Botaitis S, et al. Development of a Novel Experimental In Vitro Model of Isothiocyanate-induced Apoptosis in Human Malignant Melanoma Cells. Anticancer Res. 2016; 36: 6303–09. [CrossRef] [PubMed] [Google Scholar]
  61. Kasiappan R, Jutooru I, Karki K, Hedrick E, Safe S. Benzyl Isothiocyanate (BITC) Induces Reactive Oxygen Species-dependent Repression of STAT3 Protein by Down-regulation of Specificity Proteins in Pancreatic Cancer. J Biol Chem. 2016; 291: 27122–33. [CrossRef] [PubMed] [Google Scholar]
  62. Yeh YT, Hsu YN, Huang SY, Lin JS, Chen ZF, Chow NH, et al. Benzyl isothiocyanate promotes apoptosis of oral cancer cells via an acute redox stress-mediated DNA damage response. Food Chem Toxicol. 2016; 97: 336–45. [CrossRef] [PubMed] [Google Scholar]
  63. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018; 9: 119. [CrossRef] [PubMed] [Google Scholar]
  64. Kurusu T, Kuchitsu K. Autophagy, programmed cell death and reactive oxygen species in sexual reproduction in plants. J Plant Res. 2017; 130: 491–99. [CrossRef] [PubMed] [Google Scholar]
  65. Hambright HG, Ghosh R. Autophagy: In the cROSshairs of cancer. Biochem Pharmacol. 2017; 126: 13–22. [CrossRef] [PubMed] [Google Scholar]
  66. Sahu RP, Zhang R, Batra S, Shi Y, Srivastava SK. Benzyl isothiocyanate-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of MAPK in human pancreatic cancer cells. Carcinogenesis. 2009; 30: 1744–53. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.