Open Access
Review
Issue
BioMedicine
Volume 9, Number 1, March 2019
Article Number 2
Number of page(s) 12
DOI https://doi.org/10.1051/bmdcn/2019090102
Published online 22 February 2019
  1. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011; 32(30): 7411–31 [CrossRef] [PubMed] [Google Scholar]
  2. Fox AJS, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA. The human meniscus: A review of anatomy, function, injury, and advances in treatment. Clin Anat. 2015; 28(2): 269–87 [CrossRef] [PubMed] [Google Scholar]
  3. Rath E, Richmond JC. The menisci: basic science and advances in treatment. Br J Sports Med. 2000; 34: 252–7 [CrossRef] [PubMed] [Google Scholar]
  4. Liu C, Toma IC, Mastrogiacomo M, Krettek C, Von Lewinski G, Jagodzinski M. Meniscus reconstruction: today’s achievements and premises for the future. Arch Orthop Trauma Surg. 2013; 133(1); 95–109 [Google Scholar]
  5. Messner K, Gao J. The menisci of the knee joint. Anatomical and functional characteristics and a rationale for clinical treatment. J Anat. 1998; 193(2): 161–78 [CrossRef] [PubMed] [Google Scholar]
  6. Van Thiel GS, Verma N, Yanke A, Basu S, Farr J, Cole B. Meniscal allograft size can be predicted by height, weight, and gender. Arthroscopy. 2009; 25(7): 722–7 [CrossRef] [PubMed] [Google Scholar]
  7. Stone KR, Freyer A, Turek T, Walgenbach AW, Wadhwa S, Crues J. Meniscal sizing based on gender, height, and weight. Arthroscopy. 2007; 23(5): 503–8 [CrossRef] [PubMed] [Google Scholar]
  8. Fox AJS, Bedi A, Rodeo SA. The basic science of human knee menisci: structure, composition, and function. Sports Health. 2012; 4(4): 340–51 [CrossRef] [PubMed] [Google Scholar]
  9. Mandal BB, Park SH, Gil ES, Kaplan DL. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials. 2011; 32(2): 639–51 [CrossRef] [PubMed] [Google Scholar]
  10. Brindle T, Nyland J, Johnson DL. The Meniscus: Review of Basic Principles. J Athl Train. 2001; 36(2): 160–9 [PubMed] [Google Scholar]
  11. Gunja NJ, Athanasiou KA. Effects of co-cultures of meniscus cells and articular chondrocytes on PLLA scaffolds. Biotechnol Bioeng. 2009; 103(4): 808–16 [CrossRef] [PubMed] [Google Scholar]
  12. Lewis PB, McCarty LP, Kang RW, Cole BJ. Basic science and treatment options for articular cartilage injuries. J Orthop Sports Phys Ther. 2006; 36(10): 717–27 [CrossRef] [PubMed] [Google Scholar]
  13. Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis 1984; 43(4): 635–40 [CrossRef] [PubMed] [Google Scholar]
  14. Drengk A, Stürmer KM, Frosch K. Current Concepts in Meniscus Tissue Engineering. Curr Rheumatol Rev. 2008; 4(3): 1–6 [Google Scholar]
  15. Hellio LGMP, Vignon E, Otterness IG, Hart DA. Early changes in lapine menisci during osteoarthritis development: Part I: cellular and matrix alterations. Osteoarthr. Cartil. 2001; 9(1): 56–64 [Google Scholar]
  16. Belluck P. Common Knee Surgery does very little for some, Study Suggests, NY times - Health. http://www.nytimes.com/2013/12/26/ health/common-knee-surgery-does-very-little-for-some-study-suggests.html?pagewanted=all&_r=0. 2013 [Google Scholar]
  17. King D. The Function of semilunar cartilages. J Bone Joint Surg Am. 1936; 1: 1069 [Google Scholar]
  18. Longo UG, Loppini M, Forriol F, Romeo G, Maffulli N, Denaro V. Advances in meniscal tissue engineering. Stem Cells Int. 2012; 4203–46 [Google Scholar]
  19. Scotti C, Hirschmann MT, Antinolfi P, Martin I, Peretti GM. Meniscus repair and regeneration: review on current methods and research potential. Eur Cell Mater. 2013; 26: 150–70 [CrossRef] [PubMed] [Google Scholar]
  20. Verdonk PCM, Van Laer MEE, Verdonk R. Meniscus Replacement: From Allograft to Tissue Engineering. Sports Orthop. Traumatol. 2008; 24(2): 78–82 [CrossRef] [Google Scholar]
  21. Sgaglione NA, Steadman JR, Shaffer B, Miller MD, Fu FH. Current concepts in meniscus surgery: resection to replacement. Arthroscopy. 2003; 19(1): 161–88 [Google Scholar]
  22. Kohn D, Rudert M, Wirth CJ, Plitz W, Reiss G, Maschek H. Medial meniscus replacement by a fat pad autograft: An experimental study in sheep. International Orthopaedics (SICOT). 1997; 21: 232–8 [CrossRef] [Google Scholar]
  23. Kohn D. Autograft meniscus replacement: Experimental and clinical results. Knee Surg Sports Traumatol Arthrosc. 1993; 1(2): 123–5 [CrossRef] [PubMed] [Google Scholar]
  24. Lubowitz JH, Verdonk PCM, Reid JB, Verdonk R. Meniscus allograft transplantation: a current concepts review. Knee Surg Sports Traumatol Arthrosc 2007; 15(5): 476–92 [CrossRef] [PubMed] [Google Scholar]
  25. Shelton WR. Meniscus Allograft Transplantation. Oper Tech Sports Med. 2007; 15(2): 81–5 [Google Scholar]
  26. Buma P, Ramrattan NN, Van Tienen TG, Veth RPH. Tissue engineering of the meniscus. Biomaterials. 2004; 25(9): 1523–32 [CrossRef] [PubMed] [Google Scholar]
  27. Ionescu LC, Lee GC, Huang KL, Mauck RL. Growth factor supplementation improves native and engineered meniscus repair in vitro . Acta Biomaterialia. 2012; 8: 3687–94 [CrossRef] [PubMed] [Google Scholar]
  28. Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells. Med Hypotheses. 2008; 71(6): 900–8 [Google Scholar]
  29. Madry H, Cucchiarini M, Terwilliger EF, Trippel SB. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum Gene Ther. 2003; 14: 393–402 [Google Scholar]
  30. Madry H, Cucchiarini M, Kaul G, Kohn D, Terwilliger EF,Trippel SB. Menisci are efficiently transduced by recombinant ade-no-associated virus vectors in vitro and in vivo . J Sports Med. 2004; 32: 1860–5 [Google Scholar]
  31. Goto H, Shuler FD, Niyibizi C, Fu FH, Robbins PD, Evans CH. Gene therapy for meniscal injury: enhanced synthesis of proteoglycan and collagen by meniscal cells transduced with a TGFbeta(1) gene. Osteoarthr. Cartil. 2000; 8(4): 266–71 [Google Scholar]
  32. Hidaka C, Ibarra C, Hannafin JA, Torzilli PA, Quitoriano M, Jen SS, et al. Formation of Vascularized meniscal Tissue by Combining Gene Therapy with Tissue Engineering. Tissue Eng Part A. 2002; 8(1): 93–105 [Google Scholar]
  33. Stewart K, Pabbruwe M, Dickinson S, Sims T, Hollander AP, Chaudhuri JB. The effect of growth factor treatment on meniscal chondrocyte proliferation and differentiation on polyglycolic acid scaffolds. Tissue Eng. 2007; 13(2): 271–80 [Google Scholar]
  34. Edwards SL, Mitchell W, Matthews JB, Ingham E, Russell SJ. Design of nonwoven scaffold structures for tissue engineering of the anterior cruciate ligament. AUTEX RES J. 2004; 4(2): 86–94 [Google Scholar]
  35. Laurencin CT, Ambrosio AM, Borden MD, Cooper JA. Tissue engineering: orthopedic applications. Annu Rev Biomed Eng. 1999; 1: 19–46 [CrossRef] [PubMed] [Google Scholar]
  36. Dhandayuthapani B, Yoshida Y, Melawi T, Kumar DS. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int J Polym Sci. 2011; 1–19 [Google Scholar]
  37. Zaffagnini S, Giordano G, Vascellari A, Bruni D, Neri MP, Iacono F, et al. Arthroscopic collagen meniscus implant results at 6 to 8 years follow up. Knee Surg Sports Traumatol Arthrosc. 2007; 15(2): 175–83 [CrossRef] [PubMed] [Google Scholar]
  38. Bulgheroni P, Murena L, Ratti C, Bulgheroni E, Ronga M, Cherubino P. Follow-up of collagen meniscus implant patients: clinical, radiological, and magnetic resonance imaging results at 5 years. Knee. 2010; 17(3): 224–9. [CrossRef] [PubMed] [Google Scholar]
  39. Chiari C, Koller U, Dorotka R, Eder C, Plasenzotti R, Lang S, et al. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr Cartil. 2006; 14(10): 1056–65 [Google Scholar]
  40. Heijkants RGJC, Van Calck RV, De Groot JH, Pennings AJ, Schouten AG, Van Tienen TG, et al. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. Journal of Material Science: Materials in Medicine. 2004; 15(4): 423–7 [CrossRef] [Google Scholar]
  41. Hannink G, Van Tienen TG, Schouten AJ, Buma P. Changes in articular cartilage after meniscectomy and meniscus replacement using a biodegradable porous polymer implant. Knee Surg Sports Traumatol Arthrosc. 2011; 19(3): 441–51 [CrossRef] [PubMed] [Google Scholar]
  42. Van Tienen TG, Hannink G, Buma P. Meniscus replacement using synthetic materials. Clin Sports Med. 2009; 28(1): 143–56 [PubMed] [Google Scholar]
  43. Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M. Meniscus cells seeded in type I and type II collagen — GAG matrices in vitro . Biomaterials. 1999; 20: 701–9 [CrossRef] [PubMed] [Google Scholar]
  44. Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012; 8(1): 289–301 [Google Scholar]
  45. Ramakrishna S. Textile-based scaffolds for tissue engineering. Advanced Textiles for Wound Care. 2009; 289–321 [Google Scholar]
  46. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. J Biomater Sci Polym Ed. 2001; 12(1): 107–24 [CrossRef] [PubMed] [Google Scholar]
  47. Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater. 2010; 6(12): 4716–24 [Google Scholar]
  48. Holloway JL, Lowman AM, VanLandingham MR, Palmese GR. Interfacial optimization of fiber-reinforced hydrogel composites for soft fibrous tissue applications. Acta Biomater. 2014; 10(8): 3581–9 [Google Scholar]
  49. El-Amin S, Kelly N, Pallotta N, Hammoud S, Lipman J, Ma Y, et al. Design and Evaluation of a Synthetic Fiber-Reinforced Hydrogel Meniscal Replacement. ORS Annual Meet. 2011; 417 [Google Scholar]
  50. Gunja NJ, Athanasiou KA. Additive and synergistic effects of bFGF and hypoxia on leporine meniscus cell-seeded PLLA scaffolds. J Tissue Eng Regen Med. 2010; 4(2): 115–22 [CrossRef] [PubMed] [Google Scholar]
  51. Neves AA, Medcalf N, Smith M, Brindle KM. Evaluation of engineered meniscal cartilage constructs based on different scaffold geometries using magnetic resonance imaging and spectroscopy. Tissue Eng Part A. 2006; 12(1): 53–62 [Google Scholar]
  52. Chen G, Sato T, Ushida T, Hirochika R, Shirasaki Y, Ochiai N, Tateishi T. The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res A. 2003; 67(4): 1170–80 [CrossRef] [PubMed] [Google Scholar]
  53. Andrews SHJ, Ronsky JL, Rattner JB, Shrive NG, Jamniczky HA. An evaluation of meniscal collagenous structure using optical projection tomography. BMC Med Imaging. 2013; (13): 21 [CrossRef] [PubMed] [Google Scholar]
  54. Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater. 2007; 6(2): 162–7 [CrossRef] [PubMed] [Google Scholar]
  55. Moutos DPh, Guilak F (2009). Functional Properties of Cell-Seeded Three-Dimensionally Woven Poly (e -Caprolactone) Scaffolds for Cartilage. Tissue Eng Part A. 2009; 16(4): 1291–301 [Google Scholar]
  56. Wood DJ, Minns RJ, Strover A. Replacement of the rabbit medial meniscus with a polyester-carbon fiber bioprosthesis. Biomaterials. 1990; 11(1): 13–6 [Google Scholar]
  57. Marsano A, Wendt D, Raiteri R, Gottardi R, Stolz M, Wirz D, et al. Use of hydrodynamic forces to engineer cartilaginous tissues resembling the non-uniform structure and function of meniscus. Biomaterials. 2006; 27(35): 5927–34 [CrossRef] [PubMed] [Google Scholar]
  58. Kang SW, Son SM, Lee JS, Lee ES, Lee KY, Park SG, et al. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J Biomed Mater Res A. 2006; 77(4): 659–71 [CrossRef] [PubMed] [Google Scholar]
  59. Balint E, Gatt CJ, Dunn MG. Design and mechanical evaluation of a novel fiber-reinforced scaffold for meniscus replacement. J Biomed Mater Res A. 2012; 100(1): 195–202 [CrossRef] [PubMed] [Google Scholar]
  60. Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O, Agar G, et al. Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc. 2011; 19(2): 255–63 [CrossRef] [PubMed] [Google Scholar]
  61. Elsner J, Zur G, Guilak F, Linder-Ganz E, Shterling A. Design Optimization of a Polycarbonate-Urethane Meniscal Implant in the Sheep Knee. in 56th Annual Meeting of the Orthopaedic Research Society 2009 [Google Scholar]
  62. Aufderheide AC, Athanasiou KA. Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus. Tissue Eng. 2005; 11(7): 1095–104 [Google Scholar]
  63. Fisher MB, Henning EA, Söegaard N, Esterhai JL, Mauck RL. Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomater. 2013; 9(1): 4496–504 [Google Scholar]
  64. Baker BM, Shah RP, Huang AH, Mauck RL. Dynamic tensile loading improves the functional properties of mesenchymal stem cellladen nanofiber-based fibrocartilage. Tissue Eng Part A. 2011; 17(9-10): 1445–55 [CrossRef] [PubMed] [Google Scholar]
  65. Baker BM, Nathan AS, Huffman GR, Mauck RL. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthr. Cartil. 2009; 17(3): 336–45 [Google Scholar]
  66. Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 2007; 28(11): 1967–77 [CrossRef] [PubMed] [Google Scholar]
  67. Vrancken ACT, Buma P, Van Tienen TG. Synthetic meniscus replacement: a review. Int Orthop. 2013; 37(2): 291–9 [CrossRef] [PubMed] [Google Scholar]
  68. Linke RD, Ulmer M, Imhoff AB. Replacement of the Meniscus with a Collagen Implant (CMI). Eur J Trauma Emerg Surg. 2007; 33(4): 435–40 [CrossRef] [PubMed] [Google Scholar]
  69. Buma P Total replacement of the meniscus-trammpolin.” [Online]. Available: http://www.bmm-program.nl/site/public/go/article.aspx7id=83&title=Artificial+meniscus. [Accessed: 14-Oct-2013] [Google Scholar]
  70. Verdonk R. Instructional Course Lecture: Alternative treatments for meniscal injuries. J Bone Joint Surg Am. 79-B(5): 866–73 [Google Scholar]
  71. Petersen W, Tillmann B. Collagenous fibril texture of the human knee joint menisci. Anatomy and Embryology. 1998; 197(4): 31724 [Google Scholar]
  72. Mandal BB, Park SH, Gil ES, Kaplan DL. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials. 2011; 32(2): 639–51 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.