Open Access
Volume 9, Number 1, March 2019
Article Number 3
Number of page(s) 8
Published online 22 February 2019
  1. Kumar R, Zi-Rong X. Biomedical Compounds from Marine organisms. Mar Drugs. 2004; 2(1): 123–46 [Google Scholar]
  2. Nisizawa K, Noda H, Kikuchi R, Watamaba T. The main seaweed foods in Japan. Hydrobiol. J., v. 1987; 151/152(1): 5–29 [CrossRef] [Google Scholar]
  3. Faulkner DJ. Marine natural products. Nat Prod Rep. 2002; 19: 1–48 [Google Scholar]
  4. Smit AJ. Medicinal and pharmaceutical uses of seaweed natural products: a review. J. Appl. Phycol. 2004; 16: 245–62 [Google Scholar]
  5. Burtin P. Nutritional value of seaweeds. EJEAF Che. 2003; 2: 498503 [Google Scholar]
  6. Bhatia S, Namdeo AG, Nanda, S. Factors effecting the gelling and emulsifying properties of a natural polymer. Syst Rev Pharm. 2010b; 1(1): 86–92 [CrossRef] [Google Scholar]
  7. Bhatia S, Garg A, Sharma K, Kumar S, Sharma A, Purohit AP. Mycosporine and mycosporine-like amino acids: A paramount tool against ultra violet irradiation. Pharmacog Rev. 2011; 5(10): 138–46 [CrossRef] [PubMed] [Google Scholar]
  8. Bhatia S, Rathee P, Sharma K, Chaugule BB, Kar N, Bera T. Immuno-modulation effect of sulphated polysaccharide (porphyran) from Porphyra vietnamensis. Int. J. Biol. Macromol. 2013; 57: 50–6 [CrossRef] [PubMed] [Google Scholar]
  9. Bhatia, S., Sharma, A., Sharma, K., Kavale, M., Chaugule, B.B., Dhalwal, K., et al., Novel Algal Polysaccharides from Marine Source: Porphyran. Pharmacognosy Review. 2008; 2(4): 271–6 [Google Scholar]
  10. Bhatia, S., Sharma, K., Namdeo, A.G., Chaugule, B.B., Kavale, M., Nanda, S. Broad-spectrum sun-protective action of Porphyra-334 derived from Porphyra vietnamensis. Pharmacog. Res. 2010a; 2(1): 45–9 [CrossRef] [Google Scholar]
  11. Bhatia S, Kumar V, Sharma K, Nagpal K, Bera T. Significance of Algal Polymer in Designing Amphotericin B Nanoparticles. The Scientific World J. 2014, Article ID 564573, 21 [Google Scholar]
  12. Bhatia S, Sharma K, Nagpal K, Bera T. Investigation of the factors influencing the molecular weight of porphyran and its associated antifungal activity. Bioactive Carbohydrates and Dietary Fibre. 2015a; 5(2): 153–68 [CrossRef] [Google Scholar]
  13. Bhatia S, Sharma K, Sharma A, Nagpal K, Bera T. Anti-inflammatory, Analgesic and Antiulcer properties of Porphyra vietnamensis. Avicenna J Phytomed. 2015b; 5(1): 69–77 [Google Scholar]
  14. Bhatia S, Sharma K, Bera T. Structural characterization and pharmaceutical properties of porphyran. Asian J Pharm. 2015; 9: 93–101 [CrossRef] [Google Scholar]
  15. Bhatia S., Bera T. Evaluation of pharmacognostical, phytochemical and anti-microbial properties of Porphyra vietnamensis. International Journal of Green Pharmacy. 9(2); 2015c: 131–7 [CrossRef] [Google Scholar]
  16. Bhatia S, Sharma K, Sharma A, Namdeo AG, Chaugule BB. Antioxidant potential of Indian porphyra. Pharmacologyonline 2011; 1: 248–57 [Google Scholar]
  17. Bhatia S, Sharma K, Dahiya R, Bera T. Modern Applications of Plant Biotechnology in Pharmaceutical Sciences. Academic press, Elsevier 2015d; 164–74 [Google Scholar]
  18. Bhatia S. Nanotechnology in Drug Delivery: Fundamentals, Design, and Applications. CRC press. 2016; 121–7 [Google Scholar]
  19. Bhatia S, Goli D. Leishmaniasis: Biology, Control and New Approaches for Its Treatment. CRC press. 2016a; 164–73 [Google Scholar]
  20. Bhatia S. Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae, Springer Nature. 2016b; 117–27 [Google Scholar]
  21. Bhatia S. Systems for Drug Delivery: Safety, Animal, and Microbial Polysaccharides, Springer Nature. 2016c; 122–7 [Google Scholar]
  22. Bhatia S. Introduction to pharmaceutical biotechnology, 1st Vol, IOP Publishing house. Bristol. 2018a; 167–74 [Google Scholar]
  23. Bhatia S. Introduction to Pharmaceutical Biotechnology, 2nd vol, IOP publishing house. Bristol. 2018b; 172–77 [Google Scholar]
  24. Koster R, Anderson M, De-Beer E.J. Acetic acid analgesic screen. Fed Proc. 1959; 18: 418–20 [Google Scholar]
  25. Eddy N.B, Leimbach D. Synthetic analgesics. II. Dithienylbutenyl and dithienylbutylamines. J Pharmacol Exp Ther. 1953; 107: 385–93 [PubMed] [Google Scholar]
  26. Hunskaar S., Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain. 1987; 30: 103–14 [CrossRef] [PubMed] [Google Scholar]
  27. Tjolsen A, Hole K. Animal models of analgesia. In The Pharmacology of Pain. Dickenson, A., Besson, J., Eds.; Springer Verlag: Berlin, Germany, 1997; 130: 1–20 [CrossRef] [Google Scholar]
  28. Harborne JB. Methods of Extraction and Isolation. In: Phytochemical Methods. London, Chapman and Hall, 1998:60–66 [Google Scholar]
  29. Kujala TS, Loponen JM, Klika KD, Pihlaja K. Phenolic and beta- cyanins in red beet root (Beta vulgaris) root: distribution and effects of cold storage on the content of total phenolics and three individual compounds. J Agric Food Chem. 2000; 48: 5338–42 [CrossRef] [PubMed] [Google Scholar]
  30. Mahakunakorn P, Tohda M, Murakami Y, Matsumoto K, Watanabe H. Antioxidant and free radical scavenging activity of chitosan and its related constituents. Biol Pharm Bull. 2004; 27: 38–46 [CrossRef] [PubMed] [Google Scholar]
  31. Green LC, Wagner DA, Glogowski J. Analysis of nitrate, nitrite and 15 (N) nitrate in biological fluids. Anal Biochem. 1982; 126: 131–8 [CrossRef] [PubMed] [Google Scholar]
  32. Liu F, Ooi VEC, Chang ST. Free radical scavenging activity of mushroom polysaccharide extracts. Life Sci. 1997; 60: 763–71 [CrossRef] [PubMed] [Google Scholar]
  33. Oktay M, Gulcin I, Kufrevioglu OI. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebensmittel Wissenchaft und Technol. 2003; 36: 263–71 [CrossRef] [Google Scholar]
  34. Ruch RJ, Cheng SJ, Klaunig JE. Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogen. 1989; 10: 1003–8 [CrossRef] [PubMed] [Google Scholar]
  35. Thuong PT, Kang HJ, Na MK, Jin WY, Youn UJ, Seong YH. Antioxidant constituents from Sedum takesimense. Phytochem. 2007; 68: 2432–8 [CrossRef] [Google Scholar]
  36. Yen GC, Duh PD, Tsai CL. The relationship between antioxidant activity and maturity of peanut hulls. J Agric Food Chem. 1993; 41: 67–70 [Google Scholar]
  37. Jao CH, Ko WC. 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fish Sci. 2002; 68: 430–5 [Google Scholar]
  38. Oki T, Masuda M, Furuta S, Nishiba Y, Terahara N, Suda I. Involvement of anthocyanins and other phenolic compounds in radical scavenging activity of purple fleshed sweet potato cultivars. Food Chem Toxicol. 2002; 67: 1752–6 [Google Scholar]
  39. Lu Y, Foo YL. Antioxidant and free radical scavenging activities of selected medicinal herbs. J Life Sci. 2000; 66: 725–35 [Google Scholar]
  40. Siriwardhana N, Lee KW, Kim SH, Ha JW, Jeon YJ. Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci Tech Int. 2003; 9: 339–46 [CrossRef] [Google Scholar]
  41. Pacifici RE, Davies KJ. Protein, lipid and DNA repair system in oxidative stress: The free radical theory of aging revisited. Gerontol. 1991; 37:166–80 [CrossRef] [Google Scholar]
  42. Dahl M, Richardson M. Photogeneration of superoxide anion in serum of bovine milk and in model systems containing riboflavin and amino acids. J Dairy Sci. 1978; 61: 400–7 [Google Scholar]
  43. Halliwell B, Gutteridge JMC, Amoma OL. The deoxyribose method, a simple test tube assay for the determination of rate constant for reactions of hydroxyl radicals. Anal Biochem. 1987; 165: 215–9 [CrossRef] [PubMed] [Google Scholar]
  44. Nohl H. Involvement of free radicals in ageing: A consequence or cause of senescence. Brit Med Bull. 1993; 49: 653–67 [CrossRef] [Google Scholar]
  45. Bhatia S, Goli D, Naved T, Sharma A. Nutraceutical Properties of Indian Seaweed Porphyra. Adv Inv Pharmacol Therapeutic Med. 2018; 1: 47–54 [Google Scholar]