Open Access
Issue
BioMedicine
Volume 9, Number 2, June 2019
Article Number 8
Number of page(s) 11
DOI https://doi.org/10.1051/bmdcn/2019090208
Published online 24 May 2019
  1. Brozek W, Reichardt B, Kimberger O, Zwerina J, Dimai HP, Kritsch D, et al. Mortality after hip fracture in Austria 2008–2011. Calcif Tissue Int. 2014; 95(3): 257–66. doi: 10.1007/s00223-014-9889-9. [CrossRef] [PubMed] [Google Scholar]
  2. Klop C, Welsing PM, Cooper C, Harvey NC, Elders PJ, Bijlsma JW, et al. Mortality in British hip fracture patients, 2000–2010: a population-based retrospective cohort study. Bone. 2014; 66: 171–7. doi: 10.1016/j.bone.2014.06.011. [CrossRef] [PubMed] [Google Scholar]
  3. Lund CA, Moller AM, Wetterslev J, Lundstrom LH. Organizational factors and long-term mortality after hip fracture surgery. A cohort study of 6143 consecutive patients undergoing hip fracture surgery. PLoS One. 2014; 9(6): e99308. doi: 10.1371/journal.pone.0099308. [CrossRef] [PubMed] [Google Scholar]
  4. Meessen JM, Pisani S, Gambino ML, Bonarrigo D, van Schoor NM, Fozzato S, et al. Assessment of mortality risk in elderly patients after proximal femoral fracture. Orthopedics. 2014; 37(2): e194–200. doi: 10.3928/01477447-20140124-25. [CrossRef] [PubMed] [Google Scholar]
  5. Ribeiro TA, Premaor MO, Larangeira JA, Brito LG, Luft M, Guterres LW, et al. Predictors of hip fracture mortality at a general hospital in South Brazil: an unacceptable surgical delay. Clinics (Sao Paulo). 2014; 69(4): 253–8. [Google Scholar]
  6. Smith T, Pelpola K, Ball M, Ong A, Myint PK. Pre-operative indicators for mortality following hip fracture surgery: a systematic review and meta-analysis. Age Ageing. 2014; 43(4): 464–71. doi: 10.1093/ageing/afu065. [CrossRef] [PubMed] [Google Scholar]
  7. Appelman-Dijkstra NM, Papapoulos SE. Prevention of incident fractures in patients with prevalent fragility fractures: Current and future approaches. Best Pract Res Clin Rheumatol. 2013;27(6):805–20. doi: 10.1016/j.berh.2014.01.010. [Google Scholar]
  8. Binkley N, Bone H, Gilligan JP, Krause DS. Efficacy and safety of oral recombinant calcitonin tablets in postmenopausal women with low bone mass and increased fracture risk: a randomized, placebo-controlled trial. Osteoporos Int. 2014; 25(11): 2649–56. doi: 10.1007/s00198-014-2796-0. [CrossRef] [PubMed] [Google Scholar]
  9. Ghirardi A, Di Bari M, Zambon A, Scotti L, Della Vedova G, Lapi F, et al. Effectiveness of oral bisphosphonates for primary prevention of osteoporotic fractures: evidence from the AIFA-BEST observational study. Eur J Clin Pharmacol. 2014; 70(9): 1129–37. doi: 10.1007/s00228-014-1708-8. [CrossRef] [PubMed] [Google Scholar]
  10. Abobului M, Berghea F, Vlad V, Balanescu A, Opris D, Bojinca V, et al. Evaluation of adherence to anti-osteoporosis treatment from the socio-economic context. J Med Life. 2015; 8 Spec Iss: 119–123. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4564035&tool=pmcentrez&rendertype=abstract. [PubMed] [Google Scholar]
  11. Alarcón T, González-Montalvo JI, Martín-Vega A, Gotor P. Improving persistence and adherence to osteoporosis treatment: a challenge to solve. Osteoporos Int. 2015. doi: 10.1007/s00198-015-3323-7. [Google Scholar]
  12. Fuksa L, Vytrisalova M. Adherence to denosumab in the treatment of osteoporosis and its utilization in the Czech Republic. Curr Med Res Opin. 2015; 31(9): 1645–53. doi: 10.1185/03007995.2015.1065241. [CrossRef] [PubMed] [Google Scholar]
  13. Kishimoto H, Maehara M. Compliance and persistence with daily, weekly, and monthly bisphosphonates for osteoporosis in Japan: analysis of data from the CISA. Arch Osteoporos. 2015; 10: 231. doi: 10.1007/s11657-015-0231-6. [Google Scholar]
  14. Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. Postmenopausal hormone replacement therapy: scientific review. JAMA. 2002; 288(7): 872–81. doi: 10.1001/jama.288.7.872. [CrossRef] [PubMed] [Google Scholar]
  15. Tomková S, Telepková D, Vanuga P, Killinger Z, Sulková I, Celec P, et al. Therapeutic adherence to osteoporosis treatment. Int J Clin Pharmacol Ther. 2014; 52(8): 663–8. doi: 10.5414/CP202072. [CrossRef] [PubMed] [Google Scholar]
  16. Reid IR. Short-term and long-term effects of osteoporosis therapies. Nat Rev Endocrinol. 2015; 11(7): 418–28. doi: 10.1038/nrendo.2015.71. [PubMed] [Google Scholar]
  17. Jang SW, Lee JW, Ryu DS, Son M, Kang MJ. Design of pH-responsive alginate raft formulation of risedronate for reduced esophageal irritation. Int J Biol Macromol. 2014; 70: 174–8. doi: 10.1016/ j.ijbiomac.2014.06.048. [CrossRef] [PubMed] [Google Scholar]
  18. Lenart BA, Neviaser AS, Lyman S, Chang CC, Edobor-Osula F, Steele B, et al. Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int. 2009; 20(8): 1353–62. doi: 10.1007/s00198-008-0805-x. [CrossRef] [PubMed] [Google Scholar]
  19. Borromeo GL, Brand C, Clement JG, McCullough M, Crighton L, Hepworth G, et al. A large case-control study reveals a positive association between bisphosphonate use and delayed dental healing and osteonecrosis of the jaw. J Bone Miner Res. 2014; 29(6): 1363–8. doi: 10.1002/jbmr.2179. [CrossRef] [PubMed] [Google Scholar]
  20. Dittfeld A, Koszowska A, Brończyk AP, Nowak J, Gwizdek K, Zubelewicz-Szkodzińska B. Phytoestrogens–whether can they be an alternative to hormone replacement therapy for women during menopause period? Wiad Lek. 2015; 68(2): 163–7. http://www.ncbi.nlm.nih.gov/pubmed/26181151. [PubMed] [Google Scholar]
  21. Yuan T-T, Zhang N-D, He Y-J, Li M, Xu H-T, Zhang Q-Y. Research progress of phytoestrogens-like chemical constituents in natural medicines. Zhongguo Zhong Yao Za Zhi. 2014; 39(23): 4526–31. http://www.ncbi.nlm.nih.gov/pubmed/25911795. [PubMed] [Google Scholar]
  22. Gambacciani M. Selective estrogen modulators in menopause. Minerva Ginecol. 2013; 65(6): 621–30. http://www.ncbi.nlm.nih.gov/pubmed/24346250. [PubMed] [Google Scholar]
  23. Pinkerton JV, Thomas S. Use of SERMs for treatment in postmenopausal women. J Steroid Biochem Mol Biol. 2014; 142: 142–54. doi: 10.1016/j.jsbmb.2013.12.011. [CrossRef] [PubMed] [Google Scholar]
  24. Magee PJ, Rowland IR. Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Br J Nutr. 2007; 91(4): 513. doi: 10.1079/BJN20031075. [Google Scholar]
  25. Fu SW, Zeng GF, Zong SH, Zhang ZY, Zou B, Fang Y, et al.. Systematic review and meta-analysis of the bone protective effect of phytoestrogens on osteoporosis in ovariectomized rats. Nutr Res. 2014; 34(6): 467–77. doi: 10.1016/j.nutres.2014.05.003. [Google Scholar]
  26. Gambacciani M, Levancini M. Management of postmenopausal osteoporosis and the prevention of fractures. Panminerva Med. 2014; 56(2): 115–31. http://www.ncbi.nlm.nih.gov/pubmed/24942322. [Google Scholar]
  27. Messina M. Soy foods, isoflavones, and the health of postmenopausal women. Am J Clin Nutr. 2014; 100(Suppl): 423S–30S. doi: 10.3945/ajcn.113.071464. [CrossRef] [PubMed] [Google Scholar]
  28. Torella M, La Rezza F, Labriola D, Ammaturo FP, Ambrosio D, Zarcone R, et al.. Phytoestrogens and menopause. Minerva Ginecol. 2013; 65(6): 679–96. http://www.ncbi.nlm.nih.gov/pubmed/23881390. [PubMed] [Google Scholar]
  29. Wang C, Meng MX, Tang XL, Chen KM, Zhang L, Liu WN, et al. The proliferation, differentiation, and mineralization effects of puerarin on osteoblasts in vitro. Chin J Nat Med. 2014; 12(6): 436–42. doi: 10.1016/S1875-5364(14)60068-6. [PubMed] [Google Scholar]
  30. Xiao HH, Fung CY, Mok SK, Wong KC, Ho MX, Wang XL, et al. Flavonoids from Herba epimedii selectively activate estrogen receptor alpha (ERα) and stimulate ER-dependent osteoblastic functions in UMR-106 cells. J Steroid Biochem Mol Biol. 2014; 143: 141–51. doi: 10.1016/j.jsbmb.2014.02.019. [CrossRef] [PubMed] [Google Scholar]
  31. Mitscher LA, Drake S, Gollapudi SR, Harris JA, Shankel DM. Isolation and identification of higher plant agents active in antimutagenic assay systems: Glycyrrhiza glabra. Basic Life Sci. 1986; 39: 153–65. http://www.ncbi.nlm.nih.gov/pubmed/3094492. [Google Scholar]
  32. Hesham R. Omar, Komarova Irina, Mohamed El-Ghonemi, Fathy Ahmed, Rashad Rania, Hany D Abdelmalak, et al. Licorice abuse: time to send a warning message. Ther Adv Endocrinol Metab. 2012; 3(4): 125–38. doi: 10.1177/2042018812454322. [Google Scholar]
  33. Gantait A, Pandit SNema NK, Mukjerjee PK. Quantification of glycyrrhizin in Glycyrrhiza glabra extract by validated HPTLC densitometry. J AOAC Int. 93(2): 492–5. http://www.ncbi.nlm.nih.gov/pubmed/20480894. [PubMed] [Google Scholar]
  34. Tamir S, Eizenberg M, Somjen D, Izrael S, Vaya J. Estrogen-like activity of glabrene and other constituents isolated from licorice root. J Steroid Biochem Mol Biol. 2001; 78(3): 291–8. http://www.ncbi.nlm.nih.gov/pubmed/11595510. [CrossRef] [PubMed] [Google Scholar]
  35. Birari RB, Gupta S, Mohan CG, Bhutani KK. Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: experimental and computational studies. Phytomedicine. 2011; 18(8–9): 795–801. doi: 10.1016/j.phymed.2011.01.002. [CrossRef] [PubMed] [Google Scholar]
  36. Eu CHA, Lim WYA, Ton SH, bin Abdul Kadir K. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats. Lipids Health Dis. 2010; 9: 81. doi: 10.1186/1476-511X-9-81. [CrossRef] [PubMed] [Google Scholar]
  37. Maurya SK, Raj K, Srivastava AK. Antidyslipidaemic activity of Glycyrrhiza glabra in high fructose diet induced dsyslipidaemic Syrian golden hamsters. Indian J Clin Biochem. 2009; 24(4): 404–9. doi: 10.1007/s12291-009-0072-4. [CrossRef] [PubMed] [Google Scholar]
  38. Nakagawa K, Kishida H, Arai N, Nishiyama T, Mae T. Licorice flavonoids suppress abdominal fat accumulation and increase in blood glucose level in obese diabetic KK-A(y) mice. Biol Pharm Bull. 2004; 27(11): 1775–8. http://www.ncbi.nlm.nih.gov/pubmed/15516721. [CrossRef] [PubMed] [Google Scholar]
  39. Sitohy MZ, el-Massry RAel-Saadany SS, Labib SM. Metabolic effects of licorice roots (Glycyrrhiza glabra) on lipid distribution pattern, liver and renal functions of albino rats. MS. Nahrung. 1991; 35(8): 799–806 http://www.ncbi.nlm.nih.gov/pubmed/1780004. [CrossRef] [PubMed] [Google Scholar]
  40. Visavadiya NP, Narasimhacharya AVRL. Ameliorative effects of herbal combinations in hyperlipidemia. Oxid Med Cell Longev. 2011; 2011: 160408. doi: 10.1155/2011/160408. [CrossRef] [PubMed] [Google Scholar]
  41. Visavadiya NP, Narasimhacharya AVRL. Hypocholesterolaemic and antioxidant effects of Glycyrrhiza glabra (Linn) in rats. Mol Nutr Food Res. 2006; 50(11): 1080–6. doi: 10.1002/mnfr.200600063. [CrossRef] [PubMed] [Google Scholar]
  42. Sen S, Roy M, Chakraborti AS. Ameliorative effects of glycyrrhizin on streptozotocin-induced diabetes in rats. J Pharm Pharmacol. 2011; 63(2): 287–96. doi: 10.1111/j.2042-7158.2010.01217.x. [Google Scholar]
  43. Cronin H, Draelos ZD. Top 10 botanical ingredients in 2010 anti-aging creams. J Cosmet Dermatol. 2010; 9(3): 218–25. doi: 10.1111/j.1473-2165.2010.00516.x. [Google Scholar]
  44. Lee KT, Kim BJ, Kim JH, Heo MY, Kim HP. Biological screening of 100 plant extracts for cosmetic use (I): inhibitory activities of tyrosinase and DOPA auto-oxidation. Int J Cosmet Sci. 1997; 19(6): 291–8. doi: 10.1046/j.1467-2494.1997.171725.x. [Google Scholar]
  45. Peng F, Du Q, Peng C, Wang N, Tang H, Xie X, et al. A Review: The Pharmacology of Isoliquiritigenin. Phytother Res. 2015; 29(7): 969–77. doi: 10.1002/ptr.5348. [CrossRef] [PubMed] [Google Scholar]
  46. Kao TC, Wu CH, Yen GC. Bioactivity and potential health benefits of licorice. J Agric Food Chem. 2014; 62(3): 542–53. doi: 10.1021/jf404939f. [CrossRef] [PubMed] [Google Scholar]
  47. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008; 58(5): 424–30. http://www.pubmedcentral.nih.gov/articlerender. fcgi?artid=2707131&tool=pmcentrez&rendertype=abstract. [Google Scholar]
  48. Farag MA, Porzel A, Wessjohann LA. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochemistry. 2012; 76: 60–72. doi: 10.1016/j.phytochem.2011.12.010. [CrossRef] [PubMed] [Google Scholar]
  49. Li K, Ji S, Song W, Kuang Y, Lin Y, Tang S, et al. Glycybridins A-K, Bioactive Phenolic Compounds from Glycyrrhiza glabra. J Nat Prod. 2017; 80(2): 334–46. doi: 10.1021/acs.jnatprod.6b00783. [CrossRef] [PubMed] [Google Scholar]
  50. Li YJ, Chen J, Li Y, Li Q, Zheng YF, Fu Y, et al. Screening and characterization of natural antioxidants in four Glycyrrhiza species by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Chromatogr A. 2011; 1218(45): 8181–91. doi: 10.1016/j.chroma.2011.09.030. [CrossRef] [PubMed] [Google Scholar]
  51. Community Herbal Monograph on Glycyrrhiza Glabra L. and/or Glycyrrhiza Inflata Bat. and/or Glycyrrhiza Uralensis Fisch, Radix. European Medicines Agency; 2011. http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_Community_herbal_monograph/2011/08/WC500110647.pdf. [Google Scholar]
  52. Nair A, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016; 7(2): 27. doi: 10.4103/0976-0105.177703. [CrossRef] [PubMed] [Google Scholar]
  53. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 14(4): 595–608. http://www.ncbi.nlm.nih.gov/pubmed/8274302. [CrossRef] [PubMed] [Google Scholar]
  54. Dontas I, Halabalaki M, Moutsatsou P, Mitakou S, Papoutsi Z, Khaldi L, et al. Protective effect of plant extract from Onobrychis ebenoides on ovariectomy-induced bone loss in rats. Maturitas. 2006; 53(2): 234–42. doi: 10.1016/j.maturitas.2005.05.007. [CrossRef] [PubMed] [Google Scholar]
  55. Song SH, Zhai YK, Li CQ, Yu Q, Lu Y, Zhang Y, et al. Effects of total flavonoids from Drynariae Rhizoma prevent bone loss in vivo and in vitro. Bone Reports. 2016; 5: 262–73. doi: 10.1016/j.bonr.2016.09.001. [CrossRef] [PubMed] [Google Scholar]
  56. Wang QL, Huo XC, Wang JH, Wang DP, Zhu QL, Liu B, et al. Rutin prevents the ovariectomy-induced osteoporosis in rats. Eur Rev Med Pharmacol Sci. 2017; 21(21): 1911–7. http://www.ncbi.nlm.nih.gov/pubmed/28485786. [PubMed] [Google Scholar]
  57. Dontas IA, Lelovas PP, Kourkoulis SK, Aligiannis N, Paliogianni A, Mitakou S, et al. Protective effect of Sideritis euboea extract on bone mineral density and strength of ovariectomized rats. Menopause. 2011; 18(8): 915–22. doi: 10.1097/gme.0b013e31820ce580. [CrossRef] [PubMed] [Google Scholar]
  58. Cui Guangxia, Leng Huijie, Wang Ke, Wang Jianwei, Zhu Sainan, Jia Jing, et al. Effects of Remifemin treatment on bone integrity and remodeling in rats with ovariectomy-induced osteoporosis. PLoS One. 2013; 8(12). [Google Scholar]
  59. Tantikanlayaporn D, Wichit P, Weerachayaphorn J, Chairoungdua A, Chuncharunee A, Suksamrarn A, et al. Bone sparing effect of a novel phytoestrogen diarylheptanoid from Curcuma comosa Roxb. in ovariectomized rats. PLoS One. 2013; 8(11). doi: 10.1371/journal.pone.0078739. [Google Scholar]
  60. Wang Q, Zi CT, Wang J, Wang YN, Huang YW, Fu XQ, et al. Dendrobium officinale orchid extract prevents ovariectomy-induced osteoporosis in vivo and Inhibits RANKL-induced osteoclast differentiation in vitro. Front Pharmacol. 2018; 8: 966. doi: 10.3389/fphar.2017.00966. [CrossRef] [PubMed] [Google Scholar]
  61. Zhang R, Liu ZG, Li C, Hu SJ, Liu L, Wang JP, et al. Du-Zhong (Eucommia ulmoides Oliv.) cortex extract prevent OVX-induced osteoporosis in rats. Bone. 2009; 45(3): 553–9. doi: 10.1016/j.bone.2008.08.127. [CrossRef] [PubMed] [Google Scholar]
  62. Jee WS, Yao W. Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact. 2001; 1(3): 193–207. http://www.ncbi.nlm.nih.gov/pubmed/15758493. [PubMed] [Google Scholar]
  63. Ramli ESM, Suhaimi F, Asri SFM, Ahmad F, Soelaiman IN. Glycyrrhizic acid (GCA) as 11β-hydroxysteroid dehydrogenase inhibitor exerts protective effect against glucocorticoid-induced osteoporosis. J Bone Miner Metab. 2013; 31(3): 262–73. doi: 10.1007/s00774-012-0413-x. [CrossRef] [PubMed] [Google Scholar]
  64. Klasik-Ciszewska S, Kaczmarczyk-Sedlak I, Wojnar W. Effect of Glabridin and Glycyrrhizic Acid on Histomorphometric Parameters of Bones in Ovariectomized Rats. Acta Pol Pharm. 2019; 73(2): 517–27. http://www.ncbi.nlm.nih.gov/pubmed/27180445. [Google Scholar]
  65. Simmler C, Pauli GF, Chen SN. Phytochemistry and biological properties of glabridin. Fitoterapia. 2013; 90: 160–84. doi: 10.1016/j.fitote.2013.07.003. [Google Scholar]
  66. Somjen D, Katzburg S, Vaya J, Kaye AM, Hendel D, Posner GH, et al. Estrogenic activity of glabridin and glabrene from licorice roots on human osteoblasts and prepubertal rat skeletal tissues. J Steroid Biochem Mol Biol. 2004; 91: 241–6. doi: 10.1016/j.jsbmb.2004.04.008. [CrossRef] [PubMed] [Google Scholar]
  67. Li Z, Chen C, Zhu X, Li Y, Yu R, Xu W. Glycyrrhizin Suppresses RANKL-Induced Osteoclastogenesis and Oxidative Stress Through Inhibiting NF-κB and MAPK and Activating AMPK/Nrf2. Calcif Tissue Int. 2018; 103(3): 324–37. doi: 10.1007/s00223-018-0425-1. [CrossRef] [PubMed] [Google Scholar]
  68. Singh KB, Dixit M, Dev K, Maurya R, Singh D. Formononetin, a methoxy isoflavone, enhances bone regeneration in a mouse model of cortical bone defect. Br J Nutr. 2017; 117(11): 1511–22. doi: 10.1017/S0007114517001556. [CrossRef] [PubMed] [Google Scholar]
  69. Tyagi AM, Srivastava K, Singh AK, Kumar A, Changkija B, Pandey R, et al. Formononetin reverses established osteopenia in adult ovariectomized rats. Menopause. 2012; 19(8): 856–63. doi: 10.1097/gme.0b013e31824f9306. [CrossRef] [PubMed] [Google Scholar]
  70. Kaczmarczyk-Sedlak I, Wojnar W, Zych M, Ozimina-Kamińska E, Bońka A. Effect of Dietary Flavonoid Naringenin on Bones in Rats with Ovariectomy-Induced Osteoporosis. Acta Pol Pharm. 2016; 73(4): 1073–81. http://www.ncbi.nlm.nih.gov/pubmed/29648734. [PubMed] [Google Scholar]
  71. Uchino K, Okamoto K, Sakai E, Yoneshima E, Iwatake M, Fukuma Y, et al. Dual Effects of Liquiritigenin on the Proliferation of Bone Cells: Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Differentiation. Phyther Res. 2015; 29(11): 1714–21. doi: 10.1002/ptr.5416. [CrossRef] [Google Scholar]
  72. Wei M, Ma Y, Liu Y, Zhou Y, Men L, Yue K, et al. Urinary metabolomics study on the anti-inflammation effects of flavonoids obtained from Glycyrrhiza. J Chromatogr B Anal Technol Biomed Life Sci. 2018; 1086: 1–10. doi: 10.1016/j.jchromb.2018.04.007. [CrossRef] [Google Scholar]
  73. Xu C, Liang C, Sun W, Chen J, Chen X. Glycyrrhizic acid ameliorates myocardial ischemic injury by the regulation of inflammation and oxidative state. Drug Des Devel Ther. 2018; 12: 1311–9. doi: 10.2147/DDDT.S165225. [CrossRef] [PubMed] [Google Scholar]
  74. Sathyamoorthy Y, Kaliappan K, Nambi P, Radhakrishnan R. Glycyrrhizic acid renders robust neuroprotection in rodent model of vascular dementia by controlling oxidative stress and curtailing cytochrome-c release. Nutr Neurosci. 2019; 1–16. doi: 10.1080/1028415X.2019.1580935. [Google Scholar]
  75. Lin X-C, Chen Y-Y, Bai S-T, Zheng J, Tong L. Protective effect of licoflavone on gastric mucosa in rats with chronic superficial gastritis. Nan Fang Yi Ke Da Xue Xue Bao. 2013; 33(2): 299–304. http://www.ncbi.nlm.nih.gov/pubmed/23443794. [Google Scholar]
  76. Yang Y, Wang S, Bao YR, Li TJ, Yang GL, Chang X, et al. Antiulcer effect and potential mechanism of licoflavone by regulating inflammation mediators and amino acid metabolism. J Ethnopharmacol. 2017; 199: 175–82. doi: 10.1016/j.jep.2017.01.053. [Google Scholar]
  77. Grienke U, Braun H, Seidel N, Kirchmair J, Richter M, Krumbholz A, et al. Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod. 2014; 77(3): 563–70. doi: 10.1021/np400817j. [CrossRef] [PubMed] [Google Scholar]
  78. Choi JH, Rho MC, Lee SW, Kwon OE, Park HR, Kang JY, et al. Glabrol, an acyl-coenzyme A: Cholesterol acyltransferase inhibitor from licorice roots. J Ethnopharmacol. 2007; 110(3): 563–6. doi: 10.1016/j.jep.2006.10.012. [Google Scholar]
  79. Oza MJ, Kulkarni YA. Formononetin attenuates kidney damage in type 2 diabetic rats. Life Sci. 2019; 219: 109–21. doi: 10.1016/j.lfs.2019.01.013. [CrossRef] [PubMed] [Google Scholar]
  80. Hu W, Wu X, Tang J, Xiao N, Zhao G, Zhang L, et al. In vitro and in vivo studies of antiosteosarcoma activities of formononetin. J Cell Physiol. February 2019. doi: 10.1002/jcp.28349. [Google Scholar]
  81. Chon C-S, Yun H-S, Kim H, Ko C. Elastic Modulus of Osteoporotic Mouse Femur Based on Femoral Head Compression Test. Appl bionics Biomech. 2017; 2017: 7201769. doi: 10.1155/2017/7201769. [Google Scholar]
  82. Shah FA, Stoica A, Cardemil C, Palmquist A. Multiscale characterization of cortical bone composition, microstructure, and nano- mechanical properties in experimentally induced osteoporosis. J Biomed Mater Res Part A. 2017; 106(4): 997–1007. doi: 10.1002/jbm.a.36294. [CrossRef] [Google Scholar]
  83. Francisco JI, Yu Y, Oliver RA, Walsh WR. Relationship between age, skeletal site, and time post-ovariectomy on bone mineral and trabecular microarchitecture in rats. J Orthop Res. 2011; 29(2): 189–96. doi: 10.1002/jor.21217. [CrossRef] [PubMed] [Google Scholar]
  84. Kruger MC, Morel PCH, Experimental Control for the Ovariectomized Rat Model: Use of Sham Versus Nonmanipulated Animal. J Appl Anim Welf Sci. 2016; 19(1): 73–80. doi: 10.1080/10888705.2015.1107727. [Google Scholar]
  85. Russell WMS, Burch RL. The Principles of Humane Experimental Technique. Methuen Co, Ltd. 1959. doi: 10.1017/CBO9781107415324.004. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.