Open Access
Volume 9, Number 2, June 2019
Article Number 11
Number of page(s) 8
Published online 24 May 2019
  1. Bannister K, Dickenson AH. What do monoamines do in pain mod- ulation? Curr Opin Support Palliat Care. 2016; 10: 143–8. [CrossRef] [PubMed] [Google Scholar]
  2. Jones SL, Gebhart GF. Characterization of coeruleospinal inhibition of the nociceptive tail-flick reflex in the rat: modulation by spinal alpha 2-adrenoceptors. Brain Res. 1986; 364: 315–30. [CrossRef] [PubMed] [Google Scholar]
  3. Ishida H, Takamatsu M, Tsuji K, Kosuge T. Studies on active sub- stances in herbs used for oketsu (“stagnant blood”) in China medicine. VI. On the anticoagulative principle in paeoniae radix. Chem Pharmacol Bull. 1987; 35: 849–52. [CrossRef] [Google Scholar]
  4. Chen YF, Tsai HY, Chen HC, Hsieh MT. The effect of Veratri formosani rhizome on some central actions of Paeoniae radix. Chin Pharm J (Chung Kuo Yao Hsueh Tsa Chih). 1988; 40: 11–6. [Google Scholar]
  5. Chen YF, Wu KJ, Huang WS, Hsieh YW, Wang YW, Tsai HY, et al. Neuroprotection of Gueichih-Fuling-Wan on cerebral ischemia/ reperfusion injury in streptozotocin induced hyperglycermic rats via the inhibition of the inhibition of cellular apoptosis pathway and neuroinflammation. BioMedicine. 2016; 6(4): 15–23. [CrossRef] [PubMed] [Google Scholar]
  6. Wu KJ, Chen YF, Tsai HY, Wu CR, Wood WG. Guizhi-Fuling-Wan, a traditional Chinese herbal medicine, ameliorates memory deficits and neuronal apoptosis in the streptozotocin-induced hyperglycemic rodents via the decrease of Bax/Bcl2 ratio and casapase-3 expression. Evid Based Complement Alternat Med. 2012; 2012: 11. article ID 656150. [Google Scholar]
  7. Kobayashi M, Ueda C, Aoki S, Taiima K, Tanaka N, Yamahara J. Anticholinergic action of paeony root and its active constituents. Yakugaku Zasshi. 1990; 110: 964–8. [CrossRef] [PubMed] [Google Scholar]
  8. Tsai HY, Lin YT, Chen YF, Chen CF. Effects of veratrine and paeoniflorin in mice by writhing response test. Chin Med Coll J. 1997; 6: 221–6. [Google Scholar]
  9. Tsai HY, Lin YT, Tsai CH, Chen YF. Effects of paeoniflorin on the formalin-induced nociceptive behaviour in mice. J Ethnopharmacol. 2001; 75: 267–71. [Google Scholar]
  10. Chen YF, Lee MM, Fang HL, Yang JG, Chen YC, Tsai HY. Paeoniflorin inhibits excitatory amino acid agonist and high-dose morphine-induced nociceptive behavior in mice via modulation of N-methyl-D-asparate receptors. BMC Complement Altern Med. 2016; 16: 240. [CrossRef] [PubMed] [Google Scholar]
  11. Pickel V, Joh TH, Reis DJ. A serotonergic innervation of noradrenergic neurons of nucleus locus coeruleus: demonstration by im- munocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase. Brain Res. 1977; 308: 197–214. [Google Scholar]
  12. Bourreau JP. Internal calcium stores and norepinephrine overflow from isolated, field stimulated rat vas deferens. Life Sci. 1996; 58: 123–9. [Google Scholar]
  13. Dunlap K, Luebke JI, Turner TJ. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci. 1995; 18: 89–98. [CrossRef] [PubMed] [Google Scholar]
  14. Sabria J, Pastor C, Clos MV, Garcia A, Badia A. Involvement of dif- ferent types of voltage-sensitive calcium channels in the presynaptic regulation of noradrenaline release in rat brain and hippocampus. J Neurochem. 1995; 64: 2567–71. [CrossRef] [PubMed] [Google Scholar]
  15. Kimura M, Kimura I, Nojima H, Takahashi K, Hayashi T, Shimizu M, et al. Blocking effects of a new component, paeoniflorigenone, in paeony root on neuromuscular junction of frogs and mice. Jpn J Pharmacol. 1984; 35: 61–6. [CrossRef] [PubMed] [Google Scholar]
  16. Kimura M, Kimura I, Nojima H. Depolarizing neuromuscular blocking action induced by electropharmacological coupling in the combined effect of paeoniflorin and glycyrrhizin. Jpn J Pharmacol. 1985; 37: 395–9. [CrossRef] [PubMed] [Google Scholar]
  17. Kimura M, Kimura I, Kimura M. Decreasing effects by glycyr- rhizin and paeoniflorin on intracellular Ca2+-aequorin luminescence transients with or without caffeine in directly stimulated diaphragm muscle of mouse. Jpn J Pharmacol. 1985; 39: 387–90. [CrossRef] [PubMed] [Google Scholar]
  18. Tsai HY, Lin YT, Chen YF, Chen CF. The interactions of paeoniflo- rin and veratrine on isolated rat atria. J Ethnopharmacol. 1997; 57: 169–76. [Google Scholar]
  19. Tsai HY, Lin YT, Chen CF, Tsai CH, Chen YF. Effects of veratrine and paeoniflorin on isolated rat aorta. J Ethnopharmacol. 1999; 66: 249–55. [Google Scholar]
  20. Chen YF, Lin YT, Tan TW, Tsai HY. Effects of veratrine and pae- oniflorin on isolated mouse vas deferens. Phytomedicine. 2002; 9: 296–301. [CrossRef] [PubMed] [Google Scholar]
  21. Contreras E, Germany A, Gonzalez P, Norris B. Influence of opiate tolerance and calcium channel antagonists on the antinociceptive ef- fects of L-arginine and NG-nitro-L-arginine. Gen Pharmacol. 1997; 28: 443–8. [Google Scholar]
  22. Paxinos G, Watson C. The rat brain stereotaxic coordinates (second edition). Academic Press. 1986. p X. [Google Scholar]
  23. Glowinski J, Iversen LL. Regional studies of catecholamines in the rat brain. Int J Neurochem. 1966; 13: 655–69. [CrossRef] [PubMed] [Google Scholar]
  24. Messing RB, Lytle LD. Serotonin-containing-neurons: their possible role in pain and analgesia. Pain. 1977; 4: 1–21. [CrossRef] [PubMed] [Google Scholar]
  25. Liu MY, Su CF, Lin MT. The antinociceptive role of a bulbospinal serotonergic pathway in the rat brain. Pain. 1988; 33: 123–9. [CrossRef] [PubMed] [Google Scholar]
  26. Takeshita N, Yamaguchi I. Meta-chlorophenylpiperazine attenuates formalin- induced nociceptive responses through 5-HT1/2 recep- tors in both normal and diabetic mice. Br J Pharmacol. 1995; 116: 3133–8. [CrossRef] [PubMed] [Google Scholar]
  27. Oyama T, Ueda M, Kuraishi Y, Akaike A, Satoh M. Dual effect of serotonin on formalin-induced nociception in the rat spinal cord. Neurosci Res. 1996; 25: 129–35. [PubMed] [Google Scholar]
  28. Cooper JR, Bloom FE, Roth RH. The biochemical basis of neurop- harmacology (seventh edition). New York, Oxoford university press. 1996. p. 373–375. [Google Scholar]
  29. Ohta H, Matsumoto K, Watanabe H, Shimizu M. Involvement of β-adrenergic systems in the antagonizing effect of paeoniflorin on the scopolamine-induced deficit in radial maze performance in rats. Jpn J Pharmacol. 1993; 62: 345–9. [CrossRef] [PubMed] [Google Scholar]
  30. Ohta H, Matsumoto K, Watanabe H, Shimizu M. Involvement of alpha 1- but not alpha2-adrenergic systems in the antagonizing effect of paeoniflorin on scopolamine-induced deficit in radial maze performance in rats. Jpn J Pharmacol. 1993; 62: 199–202. [CrossRef] [PubMed] [Google Scholar]
  31. Ohta H, Ni JW, Matsumoto K, Watanabe H, Shimizu M. Peony and its major constituents, paeoniflorin, improve radial maze performance impaired by scopolamine in rats. Pharmacol Biochem Behav. 1993; 45: 719–23. [CrossRef] [PubMed] [Google Scholar]
  32. Watanabe H. Candidates for cognitive enhancer extracted from medicinal plants: paeoniflorin and tetramethylpyrazine. Behav Brain Res. 1997; 83: 135–41. [CrossRef] [PubMed] [Google Scholar]
  33. Wood PB. Role of central dopamine in pain and analgesia. Expert Rev Neurother. 2014; 781–97. published online 09, Jan, 2014, [Google Scholar]
  34. Xue R, He XH, Yuan L, Chen HX, Zhang LM, Yong Z, et al. Effects of 071031B, a novel serotonin and norepinephrine reuptake inhibitor, on monoamine system in mice and rats. J Pharmacol Sci. 2016; 130: 1–7. [Google Scholar]
  35. Tamano R, Ishida M, Asaki T, Hasegawa M, Shinohara S. Effect of spinal monoaminergic neuronal system dysfunction on pain threshold in rats, and the analgesic effect of serotonin and norepinephrine reuptake inhibitors. Neurosci Letters. 2016; 615: 78–82. [CrossRef] [Google Scholar]
  36. Hoshino H, Obata H, Nakajima K, Mieda R, Saito S. The antihyperalgesic effects of intrathecal bupropion, a dopamine and norepinephrine reuptake inhibitor, in a rat model of neuropathic pain. Anesth Analg. 2015; 120: 460–6. [CrossRef] [PubMed] [Google Scholar]