Open Access
Volume 9, Number 4, December 2019
Article Number 22
Number of page(s) 9
Published online 14 November 2019
  1. Nejadtaghi M, Farrokhi E, Samadani AA, Zeinalian M, Hashemzadeh-Chaleshtori M. The fluctuation of BRCA1 gene is associated in pathogenesis of familial colorectal cancer type X. J Clin Anal Med. 2017; 8: 496–9. [Google Scholar]
  2. Vaiopoulos AG, Athanasoula KC, Papavassiliou AG. Epigenetic modifications in colorectal cancer: molecular insights and therapeutic challenges. BBA. Molecular basis of disease. 2014; 1842(7): 971–80. [CrossRef] [Google Scholar]
  3. Kumar V, Abbas AK, Aster JC. Robbins basic pathology e-book: Elsevier Health Sciences; 2017. [Google Scholar]
  4. Okugawa Y, Grady WM, Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology. 2015; 149(5): 1204–25. e12. [CrossRef] [PubMed] [Google Scholar]
  5. Choong MK, Tsafnat G. Genetic and epigenetic biomarkers of colorectal cancer. Clin Gastroenterol Hepatol. 2012; 10(1): 9–15. [CrossRef] [PubMed] [Google Scholar]
  6. Samadani AA, Mansouri Ghanaie F, Joukar F, Safizadeh M, Nourollahi SE, Rashidy-Pour A. Performance of methylation and expression fluctuations of sonic hedgehog genes in gastric adenocarcinoma. KOOMESH. 2019; 21(2): 215–24. [Google Scholar]
  7. Akhavan-Niaki H, Samadani AA. Molecular insight in gastric cancer induction: an overview of cancer stemness genes. Cell Biochem Biophys. 2014; 68(3): 463–73. [CrossRef] [PubMed] [Google Scholar]
  8. Fattahi S, Langroudi MP, Samadani AA, Nikbakhsh N, Asouri M, Akhavan-Niaki H. Application of unique sequence index (USI) barcode to gene expression profiling in gastric adenocarcinoma. Cell Commun Signal. 2017; 11(1): 97–104. [Google Scholar]
  9. KosariMonfared M, Nikbakhsh N, Fattahi S, Ghadami E, Ranaei M, Taheri H, et al. CTNNBIP1 downregulation is associated with tumor grade and viral infections in gastric adenocarcinoma. J Cell Physiol. 2019; 234(3): 2895–904. [Google Scholar]
  10. Samadani AA, Noroollahi SE, Mansour-Ghanaei F, Rashidy-Pour A, Joukar F, Bandegi AR. Fluctuations of epigenetic regulations in human gastric Adenocarcinoma: How does it affect? Biomed Pharmacother. 2019; 109: 144–56. [CrossRef] [PubMed] [Google Scholar]
  11. Samadani AA, Nikbakhsh N, Taheri H, Shafaee S, Fattahi S, Langroudi MP, et al. CDX1/2 and KLF5 Expression and Epigenetic Modulation of Sonic Hedgehog Signaling in Gastric Adenocarcinoma. Pathol Oncol Res. 2019; 1–8. [Google Scholar]
  12. Langroudi MP, Nikbakhsh N, Samadani AA, Fattahi S, Taheri H, Shafaei S, et al. FAT4 hypermethylation and grade dependent downregulation in gastric adenocarcinoma. J Cell Commun Signal. 2017; 11(1): 69–75. [CrossRef] [PubMed] [Google Scholar]
  13. Akhavan-Niaki H, Samadani AA. DNA methylation and cancer development: molecular mechanism. Cell Biochem Biophys. 2013; 67(2): 501–13. [CrossRef] [PubMed] [Google Scholar]
  14. Samadani AA, Norollahi SE, Rashidy-Pour A, Mansour-Ghanaei F, Nemati S, Joukar F, et al. Cancer signaling pathways with a therapeutic approach: An overview in epigenetic regulations of cancer stem cells. Biomed Pharmacother. 2018; 108: 590–9. [CrossRef] [PubMed] [Google Scholar]
  15. Fattahi S, Nikbakhsh N, Taheri H, Ghadami E, Kosari-Monfared M, Amirbozorgi G, et al. Prevalence of multiple infections and the risk of gastric adenocarcinoma development at earlier age. Diagn Microbiol Infect Dis. 2018; 92(1): 62–8. [Google Scholar]
  16. Ghadami E, Nikbakhsh N, Fattahi S, Kosari-Monfared M, Ranaee M, Taheri H, et al. Epigenetic alterations of CYLD promoter modulate its expression in gastric adenocarcinoma: A footprint of infections. J Cell Physiol. 2019; 234(4): 4115–24. [Google Scholar]
  17. Samadani AA, Nikbakhsh N, Pilehchian M, Fattahi S, Akhavan-Niaki H Epigenetic changes of CDX2 in gastric adenocarcinoma. J Cell Commun Signal. 2016; 10(4): 267–72. [CrossRef] [PubMed] [Google Scholar]
  18. Norollahi SE, Alipour M, Rashidy-Pour A, Samadani AA, Larijani LV. Regulatory fluctuation of WNT16 gene expression is associated with human gastric adenocarcinoma. J Gastrointest Cancer. 2019; 50(1): 42–7. [Google Scholar]
  19. Norollahi SE, Mansour-Ghanaei F, Joukar F, Ghadarjani S, Mojtahedi K, Nejad KG, et al. Therapeutic approach of Cancer stem cells (CSCs) in gastric adenocarcinoma; DNA methyltransferases enzymes in cancer targeted therapy. Biomed Pharmacother. 2019; 115: 108958. [CrossRef] [PubMed] [Google Scholar]
  20. Samadani AA, Akhavan-Niaki H. Interaction of sonic hedgehog (SHH) pathway with cancer stem cell genes in gastric cancer. Medical Oncology. 2015; 32(3): 48. [CrossRef] [PubMed] [Google Scholar]
  21. Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128(4): 693–705. [CrossRef] [PubMed] [Google Scholar]
  22. Arvelo F, Sojo F, Cotte C. Biology of colorectal cancer. Ecancermedicalscience. 2015; 9. [Google Scholar]
  23. Ting AH, McGarvey KM, Baylin SB. The cancer epigenome-components and functional correlates. Genes Dev. 2006; 20(23): 3215–31. [CrossRef] [PubMed] [Google Scholar]
  24. Gerstung M, Eriksson N, Lin J, Vogelstein B, Beerenwinkel N. The temporal order of genetic and pathway alterations in tumorigenesis. PloS one. 2011; 6(11): e27136. [CrossRef] [PubMed] [Google Scholar]
  25. Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. Oncogene. 2002; 21(35): 5462. [Google Scholar]
  26. Polyak K. Breast cancer: origins and evolution. J Clin Investig. 2007; 117(11): 3155–63. [CrossRef] [Google Scholar]
  27. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer–a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006; 6(2): 107. [CrossRef] [PubMed] [Google Scholar]
  28. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007; 8(4): 286. [CrossRef] [PubMed] [Google Scholar]
  29. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002; 3(6): 415. [CrossRef] [PubMed] [Google Scholar]
  30. Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol. Cancer Ther. 2009; 8(6): 1409–20. [CrossRef] [PubMed] [Google Scholar]
  31. Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980; 8(7): 1499–504. [CrossRef] [PubMed] [Google Scholar]
  32. Bird AP, Gene number, noise reduction and biological complexity. Trends in Genetics. 1995; 11(3): 94–100. [CrossRef] [Google Scholar]
  33. Vanyushin B, Tkacheva S, Belozersky A. Rare bases in animal DNA. Nature. 1970; 225(5236): 948. [CrossRef] [PubMed] [Google Scholar]
  34. Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci. 1993; 90(24): 11995–9. [CrossRef] [Google Scholar]
  35. Daniel FI, Cherubini K, Yurgel LS, De Figueiredo MAZ, Salum FG. The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer. 2011; 117(4): 677–87. [CrossRef] [PubMed] [Google Scholar]
  36. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM, Dryja TP. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am. J. Hum. Genet. 1991; 48(5): 880. [Google Scholar]
  37. Kuno T, Matsubara N, Tsuda S, Kobayashi M, Hamanaka M, Yamagishi D, et al. Alterations of the base excision repair gene MUTYH in sporadic colorectal cancer. Oncology reports. 2012; 28(2): 473–80. [CrossRef] [PubMed] [Google Scholar]
  38. Furlan D, Trapani D, Berrino E, Debernardi C, Panero M, Libera L, et al. Oxidative DNA damage induces hypomethylation in a compromised base excision repair colorectal tumourigenesis. Br J Cancer. 2017; 116(6): 793. [CrossRef] [PubMed] [Google Scholar]
  39. Gismondi V, Meta M, Bonelli L, Radice P, Sala P, Bertario L, et al. Prevalence of the Y165C, G382D and 1395delGGA germline mutations of the MYH gene in Italian patients with adenomatous polyposis coli and colorectal adenomas. Int J Cancer. 2004; 109(5): 680–4. [CrossRef] [PubMed] [Google Scholar]
  40. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G: C→ T: A mutations in colorectal tumors. Nature genetics. 2002; 30(2): 227. [CrossRef] [PubMed] [Google Scholar]
  41. Sn Jones, Emmerson P, Maynard J, Best JM, Jordan S, Williams GT, et al. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G: C→ T: A mutations. Hum Mol Genet. 2002; 11(23): 2961–7. [CrossRef] [PubMed] [Google Scholar]
  42. Kabzinski J, Mucha B, Cuchra M, Markiewicz L, Przybylowska K, Dziki A, et al. Efficiency of base excision repair of oxidative DNA damage and its impact on the risk of colorectal cancer in the polish population. Oxid Med Cell Longev. 2016; 2016. [Google Scholar]
  43. Efr Nascimento, Ribeiro ML, Magro DO, Carvalho J, Kanno DT, Car Martinez, et al. Tissue expresion of the genes mutyh and ogg1 in patients with sporadic colorectal cancer. ABCD Arquivos Brasileiros de Cirurgia Digestiva (São Paulo). 2017; 30(2): 98–102. [CrossRef] [Google Scholar]
  44. Takao M, Yamaguchi T, Eguchi H, Tada Y, Kohda M, Koizumi K, et al. Characteristics of MUTYH variants in Japanese colorectal polyposis patients. Int J Clin Oncol. 2018; 23(3): 497–503. [CrossRef] [PubMed] [Google Scholar]
  45. Gao D, Herman JG, Guo M The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget. 2016; 7(24): 37331. [PubMed] [Google Scholar]
  46. Lahtz C, Pfeifer GP. Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol. 2011; 3(1): 51–8. [CrossRef] [PubMed] [Google Scholar]
  47. Reeves HL, Narla G, Ogunbiyi O, Haq AI, Katz A, Benzeno S, et al. Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer. Gastroenterology. 2004; 126(4): 1090–103. [CrossRef] [PubMed] [Google Scholar]
  48. Koivisto PA, Zhang X, Sallinen SL, Sallinen P, Helin HJ, Dong JT, et al. Absence of KLF6 gene mutations in human astrocytic tumors and cell lines. Int J Cancer. 2004; 111(4): 642–3. [CrossRef] [PubMed] [Google Scholar]
  49. Chen H, Liu X, Lin J, Chen T, Feng Q, Zeng Y. Mutation analysis of KLF6 gene in human nasopharyngeal carcinomas. Ai zheng = Aizheng = Chin J Canc. 2002; 21(10): 1047–50. [Google Scholar]
  50. Gehrau RC, D’Astolfo DS, Dumur CI, Bocco JL, Koritschoner NP. Nuclear expression of KLF6 tumor suppressor factor is highly associated with overexpression of ERBB2 oncoprotein in ductal breast carcinomas. PloS one. 2010; 5(1): e8929. [CrossRef] [PubMed] [Google Scholar]
  51. Sangodkar J, Shi J, DiFeo A, Schwartz R, Bromberg R, Choudhri A, et al. Functional role of the KLF6 tumour suppressor gene in gastric cancer. European Journal of Cancer. 2009; 45(4): 666–76. [CrossRef] [PubMed] [Google Scholar]
  52. Chen C, Hyytinen E-R, Sun X, Helin HJ, Koivisto PA, Frierson HF Jr, et al., Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am J Pathol. 2003; 162(4): 1349–54. [CrossRef] [PubMed] [Google Scholar]
  53. Cho Y-G, Choi B-J, Song J-W, Kim S-Y, Nam S-W, Lee S-H, et al. Aberrant expression of Krüppel-like factor 6 protein in colorectal cancers. World J Gastroenterol. 2006; 12(14): 2250. [CrossRef] [PubMed] [Google Scholar]
  54. Ozdemir F, Koksal M, Ozmen V, Aydin I, Buyru N. Mutations and Krüppel-like factor 6 (KLF6) expression levels in breast cancer. Tumor Biology. 2014; 35(6): 5219–25. [CrossRef] [Google Scholar]
  55. Yamashita K, Upadhyay S, Osada M, Hoque MO, Xiao Y, Mori M, et al. Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer cell. 2002; 2(6): 485–95. [CrossRef] [PubMed] [Google Scholar]
  56. Moodley N. The induction of KLF4 expression by coupled epigenetic therapies: potential association with the WNT signalling pathway in colorectal cancer cells 2014. [Google Scholar]
  57. Shen Y, Chen TJ, Lacorazza HD. Novel tumor-suppressor function of KLF4 in pediatric T-cell acute lymphoblastic leukemia. Exp Hematol. 2017; 53: 16–25. [CrossRef] [PubMed] [Google Scholar]
  58. Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): what we currently know. Gene. 2017; 611: 27–37. [Google Scholar]
  59. Riverso M, Montagnani V, Stecca B. KLF4 is regulated by RAS/ RAF/MEK/ERK signaling through E2F1 and promotes melanoma cell growth. Oncogene. 2017; 36(23): 3322. [Google Scholar]
  60. Cui J, Shi M, Quan M, Xie K. Regulation of EMT by KLF4 in gastrointestinal cancer. Curr Cancer Drug Targets. 2013; 13(9): 986–95. [CrossRef] [PubMed] [Google Scholar]
  61. Yamaguchi A, Kuroyama K, Tokura A, Saito A, Arikawa H, Hasebe T, et al. Krüppel-like factor 4 expression in oral carcinoma cells and hypermethylation at the gene promoter. BMC oral health. 2016; 16(1): 13. [CrossRef] [PubMed] [Google Scholar]
  62. Ghaleb A, Katz J, Kaestner K, Du J, Yang V. Krüppel-like factor 4 exhibits antiapoptotic activity following γ-radiation-induced DNA damage. Oncogene. 2007; 26(16): 2365. [Google Scholar]
  63. Nakahara Y, Northcott PA, Li M, Kongkham PN, Smith C, Yan H, et al. Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia. 2010; 12(1): 20–7. [Google Scholar]
  64. Zammarchi F, Morelli M, Menicagli M, Di Cristofano C, Zavaglia K, Paolucci A, et al. KLF4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma. Am J Pathol. 2011; 178(1): 361–72. [CrossRef] [PubMed] [Google Scholar]
  65. Gregorieff A, Clevers H, Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev. 2005; 19(8): 877–90. [CrossRef] [PubMed] [Google Scholar]
  66. Luo Y, Zhang C, Tang F, Zhao J, Shen C, Wang C, I Bioinformatics identification of potentially involved microRNAs in Tibetan with gastric cancer based on microRNA profiling. Cancer Cell Int. 2015; 15(1): 115. [CrossRef] [PubMed] [Google Scholar]
  67. Nakashima T, Liu D, Nakano J, Ishikawa S, Yokomise H, Ueno M, et al. Wnt1 overexpression associated with tumor proliferation and a poor prognosis in non-small cell lung cancer patients. Oncol Rep. 2008; 19(1): 203–9. [PubMed] [Google Scholar]
  68. Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006; 127(3): 469–80. [CrossRef] [PubMed] [Google Scholar]
  69. Basu S, Haase G, Ben-Ze’ev A, Wnt signaling in cancer stem cells and colon cancer metastasis. 2016; F1000Research: 5. [Google Scholar]
  70. Paik SH, Kim HJ, Lee SB, Im SW, Ju YS, Yeon JH, et al. Linkage and association scan for tanning ability in an isolated Mongolian population. BMB reports. 2011; 44(11): 741–6. [CrossRef] [PubMed] [Google Scholar]
  71. Ge Yx, Wang Ch, Hu Fy, Pan Lx, Min J, Niu Ky, et al. New advances of TMEM88 in cancer initiation and progression, with special emphasis on Wnt signaling pathway. J Cell Physiol. 2018; 233(1): 79–87. [Google Scholar]
  72. He B, Reguart N, You L, Mazieres J, Xu Z, Lee AY, et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene. 2005; 24(18): 3054. [Google Scholar]
  73. Joukar F, Mavaddati S, Mansour-Ghanaei F, Samadani AA. Gut Microbiota as a Positive Potential Therapeutic Factor in Carcinogenesis: an Overview of Microbiota-Targeted Therapy. J Gastrointest Cancer. 2019; 1–16. [Google Scholar]
  74. Gyparaki M-T, Basdra EK, Papavassiliou AG. DNA methylation biomarkers as diagnostic and prognostic tools in colorectal cancer. J Mol Med (Berl). 2013 Nov; 91(11): 1249–56. [CrossRef] [PubMed] [Google Scholar]