Open Access
Volume 9, Number 4, December 2019
Article Number 27
Number of page(s) 7
Published online 14 November 2019
  1. Karnov KKS, Grønhøj C, Jensen DH, Wessel I, Charabi BW, Specht L, et al. Increasing incidence and survival in oral cancer: a nationwide Danish study from 1980 to 2014. Acta Oncol. 2017; 56: 1204–9. [CrossRef] [PubMed] [Google Scholar]
  2. Seema S, Krishnan M, Harith AK, Sahai K, Iyer SR, Arora V, et al. Laser ionization mass spectrometry in oral squamous cell carcinoma. J Oral Pathol Med. 2014; 43: 471–83. [CrossRef] [PubMed] [Google Scholar]
  3. Finck BN, Kelly DP. Peroxisome proliferator-activated receptor alpha (PPARalpha) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart. J Mol Cell Cardiol. 2002; 34: 1249–57. [CrossRef] [PubMed] [Google Scholar]
  4. Fruchart JC. Peroxisome proliferator-activated receptor-alpha activation and high-density lipoprotein metabolism. Am J Cardiol. 2001; 88: 24N–9N. [CrossRef] [PubMed] [Google Scholar]
  5. Grabacka M, Pierzchalska M, Reiss K. Peroxisome proliferator activated receptor α ligands as anticancer drugs targeting mitochondrial metabolism. Curr Pharm Biotechnol. 2013; 14: 342–56. [CrossRef] [PubMed] [Google Scholar]
  6. Huang YP, Chang NW. PPARα modulates gene expression profiles of mitochondrial energy metabolism in oral tumorigenesis. Biomedicine (Taipei). 2016; 6: 3. [CrossRef] [PubMed] [Google Scholar]
  7. Varet J, Vincent L, Mirshahi P, Pille JV, Legrand E, Opolon P, et al. Fenofibrate inhibits angiogenesis in vitro and in vivo. Cell Mol Life Sci. 2003; 60: 810–9. [CrossRef] [PubMed] [Google Scholar]
  8. Chang NW, Tsai MH, Lin C, Hsu HT, Chu PY, Yeh CM, et al. Fenofibrate exhibits a high potential to suppress the formation of squamous cell carcinoma in an oral-specific 4-nitroquinoline 1-oxide/ arecoline mouse model. Biochim Biophys Acta. 2011; 1812: 558–64. [CrossRef] [PubMed] [Google Scholar]
  9. Jan CI, Tsai MH, Chiu CF, Huang YP, Liu CJ, Chang NW. Fenofibrate suppresses oral tumorigenesis via reprogramming metabolic processes: potential drug repurposing for oral cancer. Int J Biol Sci. 2016; 12: 786–98. [CrossRef] [PubMed] [Google Scholar]
  10. Tsai SC, Tsai MH, Chiu CF, Lu CC, Kuo SC, Chang NW, et al. AMPK-dependent signaling modulates the suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-κB pathway. Environ Toxicol. 2016; 31: 866–76. [CrossRef] [PubMed] [Google Scholar]
  11. Huang YP, Chang NW. Proteomic analysis of oral cancer reveals new potential therapeutic targets involved in the Warburg effect. Clin Exp Pharmacol Physiol. 2017; 44: 880–7. [CrossRef] [PubMed] [Google Scholar]
  12. Ma J, Fu Y, Tu YY, Liu Y, Tan YR, Ju WT, et al. Mutation allele frequency threshold does not affect prognostic analysis using next-generation sequencing in oral squamous cell carcinoma. BMC Cancer. 2018; 18: 758. [CrossRef] [PubMed] [Google Scholar]
  13. Nakagaki T, Tamura M, Kobashi K, Omori A, Koyama R, Idogawa M, et al. Targeted next-generation sequencing of 50 cancer-related genes in Japanese patients with oral squamous cell carcinoma. Tumour Biol. 2018; 40: 1010428318800180. [CrossRef] [PubMed] [Google Scholar]
  14. Kan F, Ye L, Yan T, Cao J, Zheng J, Li W. Proteomic and transcriptomic studies of HBV-associated liver fibrosis of an AAV-HBV-infected mouse model. BMC Genomics. 2017; 18: 641. [CrossRef] [PubMed] [Google Scholar]
  15. Chhangawala S, Rudy G, Mason CE, Rosenfeld JA. The impact of read length on quantification of differentially expressed genes and splice junction detection. Genome Biol. 2015; 16: 131. [CrossRef] [PubMed] [Google Scholar]
  16. Hart T, Komori HK, LaMere S, Podshivalova K, Salomon DR. Finding the active genes in deep RNA-seq gene expression studies. BMC Genomics. 2013; 14: 778. [CrossRef] [PubMed] [Google Scholar]
  17. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017; 45: D353–61. [CrossRef] [PubMed] [Google Scholar]
  18. Brewer G. Messenger RNA decay during aging and development. Ageing Res Rev. 2002; 1: 607–25. [CrossRef] [PubMed] [Google Scholar]
  19. Burgess HM, Mohr I. Cellular 5’-3’ mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses. Cell Host Microbe. 2015; 17: 332–44. [CrossRef] [PubMed] [Google Scholar]
  20. Franks TM, Lykke-Andersen J. The control of mRNA decapping and P-body formation. Mol Cell. 2008; 32: 605–15. [CrossRef] [PubMed] [Google Scholar]
  21. Zinder JC, Lima CD. Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors. Genes Dev. 2017; 31: 88–100. [CrossRef] [PubMed] [Google Scholar]
  22. Suchorska WM, Lach MS. The role of exosomes in tumor progression and metastasis (Review). Oncol Rep. 2016; 35: 1237–44. [CrossRef] [PubMed] [Google Scholar]
  23. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017; 8: 761–73. [CrossRef] [PubMed] [Google Scholar]
  24. Januszyk K, Lima CD. The eukaryotic RNA exosome. Curr Opin Struct Biol. 2014; 24: 132–40. [CrossRef] [PubMed] [Google Scholar]
  25. Kilchert C, Wittmann S, Vasiljeva L. The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol. 2016; 17: 227–39. [CrossRef] [PubMed] [Google Scholar]
  26. Liu Q, Greimann JC, Lima CD. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell. 2006; 127: 1223–37. [CrossRef] [PubMed] [Google Scholar]
  27. Makino DL, Baumgärtner M, Conti E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature. 2013; 495: 70–5. [CrossRef] [PubMed] [Google Scholar]
  28. Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB. The RNA exosome and RNA exosome-linked disease. RNA. 2018; 24: 127–42. [CrossRef] [PubMed] [Google Scholar]
  29. Djurec M, Graña O, Lee A, Troulé K, Espinet E, Cabras L, et al. Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors. Proc Natl Acad Sci U S A. 2018; 115: E1147–56. [CrossRef] [PubMed] [Google Scholar]
  30. Balagopal V, Fluch L, Nissan T. Ways and means of eukaryotic mRNA decay. Biochim Biophys Acta. 2012; 1819: 593–603. [CrossRef] [PubMed] [Google Scholar]
  31. Collart MA, Panasenko OO. The Ccr4-not complex. Gene. 2012; 492: 42–53. [CrossRef] [Google Scholar]
  32. Rodríguez-Gil A, Ritter O, Saul VV, Wilhelm J, Yang CY, Grosschedl R, et al. The CCR32-NOT complex contributes to repression of Major Histocompatibility Complex class II transcription. Sci Rep. 2017; 7: 3547. [CrossRef] [PubMed] [Google Scholar]
  33. Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, et al. miRNA repression involves GW182-mediated recruitment of CCR33-NOT through conserved W-containing motifs. Nat Struct Mol Biol. 2011; 18: 1218–26. [CrossRef] [PubMed] [Google Scholar]
  34. Zhang X, Virtanen A, Kleiman FE. To polyadenylate or to deadenylate: that is the question. Cell Cycle. 2010; 9: 4437–49. [CrossRef] [PubMed] [Google Scholar]
  35. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 2013; 45: 186–90. [CrossRef] [Google Scholar]
  36. Shirai YT, Mizutani A, Nishijima S, Horie M, Kikuguchi C, Elisseeva O, et al. CNOT3 targets negative cell cycle regulators in non-small cell lung cancer development. Oncogene. Oncogene. 2019; 38: 2580–94. [CrossRef] [Google Scholar]
  37. Faraji F, Hu Y, Wu G, Goldberger NE, Walker RC, Zhang J, et al. An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease. Genome Res. 2014; 24: 227–40. [CrossRef] [PubMed] [Google Scholar]
  38. Sohn EJ, Jung DB, Lee H, Han I, Lee J, Lee H, et al. CNOT2 promotes proliferation and angiogenesis via VEGF signaling in MDAMB-231 breast cancer cells. Cancer Lett. 2018; 412: 88–98. [CrossRef] [Google Scholar]
  39. Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. Biochim Biophys Acta. 2016; 1863: 3125–47. [CrossRef] [PubMed] [Google Scholar]
  40. Hartley JL, Zachos NC, Dawood B, Donowitz M, Forman J, Pollitt RJ, et al. Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology. 2010; 138: 2388–98, 2398.e1–2. [CrossRef] [Google Scholar]
  41. Fabre A, Charroux B, Martinez-Vinson C, Roquelaure B, Odul E, Sayar E, et al. SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet. 2012; 90: 689–92. [CrossRef] [Google Scholar]
  42. Braun JE, Truffault V, Boland A, Huntzinger E, Chang CT, Haas G, et al. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5’ exonucleolytic degradation. Nat Struct Mol Biol. 2012; 19: 1324–31. [CrossRef] [PubMed] [Google Scholar]
  43. Zangari J, Ilie M, Rouaud F, Signetti L, Ohanna M, Didier R, et al. Rapid decay of engulfed extracellular miRNA by XRN1 exonuclease promotes transient epithelial-mesenchymal transition. Nucleic Acids Res. 2017; 45: 4131–41. [PubMed] [Google Scholar]